Anton du Plessis, Gerd Schwaderer, Ilaria Cristofolini, Marco Zago, Matteo Benedetti
{"title":"Dimensional metrology of additively manufactured lattice structures by combined tactile probe and X-ray tomography","authors":"Anton du Plessis, Gerd Schwaderer, Ilaria Cristofolini, Marco Zago, Matteo Benedetti","doi":"10.1002/mdp2.216","DOIUrl":null,"url":null,"abstract":"<p>Additive manufacturing allows high complexity of manufactured structures, permitting entirely new design capabilities. In the context of complex design, lattice structures hold the most promise for high complexity, tailorable and ultra-lightweight structures. These unique structures are suitable for various applications including light-weighting, energy absorption, vibration isolation, thermal management amongst many others. This new complexity leads to new manufacturing quality control and metrology challenges. Traditional metrology tools cannot access the entire structure, and the only reliable method to inspect the inner details of these structures is by X-ray computed tomography (CT). This work highlights the challenges of this process, demonstrating a novel workflow for dimensional metrology of coupon lattice samples—using a combination of surface and internal metrology using tactile probe and CT. This dual combined approach uses traditional surface coordinate measurement on exterior accessible surfaces, which is followed by internal lattice measurements. The results show a clear method and workflow for combining these technologies for a holistic dimensional inspection. The confidence gained by inspection of such lattice coupons will support the application of these lattices in end-use parts.</p>","PeriodicalId":100886,"journal":{"name":"Material Design & Processing Communications","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/mdp2.216","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Additive manufacturing allows high complexity of manufactured structures, permitting entirely new design capabilities. In the context of complex design, lattice structures hold the most promise for high complexity, tailorable and ultra-lightweight structures. These unique structures are suitable for various applications including light-weighting, energy absorption, vibration isolation, thermal management amongst many others. This new complexity leads to new manufacturing quality control and metrology challenges. Traditional metrology tools cannot access the entire structure, and the only reliable method to inspect the inner details of these structures is by X-ray computed tomography (CT). This work highlights the challenges of this process, demonstrating a novel workflow for dimensional metrology of coupon lattice samples—using a combination of surface and internal metrology using tactile probe and CT. This dual combined approach uses traditional surface coordinate measurement on exterior accessible surfaces, which is followed by internal lattice measurements. The results show a clear method and workflow for combining these technologies for a holistic dimensional inspection. The confidence gained by inspection of such lattice coupons will support the application of these lattices in end-use parts.