Learning Circular Hidden Quantum Markov Models: A Tensor Network Approach

Mohammad Ali Javidian;Vaneet Aggarwal;Zubin Jacob
{"title":"Learning Circular Hidden Quantum Markov Models: A Tensor Network Approach","authors":"Mohammad Ali Javidian;Vaneet Aggarwal;Zubin Jacob","doi":"10.1109/TQE.2023.3319254","DOIUrl":null,"url":null,"abstract":"This article proposes circular hidden quantum Markov models (c-HQMMs), which can be applied for modeling temporal data. We show that c-HQMMs are equivalent to a tensor network (more precisely, circular local purified state) model. This equivalence enables us to provide an efficient learning model for c-HQMMs. The proposed learning approach is evaluated on six real datasets and demonstrates the advantage of c-HQMMs as compared to HQMMs and HMMs.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"4 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10269064","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10269064/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This article proposes circular hidden quantum Markov models (c-HQMMs), which can be applied for modeling temporal data. We show that c-HQMMs are equivalent to a tensor network (more precisely, circular local purified state) model. This equivalence enables us to provide an efficient learning model for c-HQMMs. The proposed learning approach is evaluated on six real datasets and demonstrates the advantage of c-HQMMs as compared to HQMMs and HMMs.
学习循环隐量子马尔可夫模型:一种张量网络方法
本文提出了一种可用于时间数据建模的圆形隐量子马尔可夫模型(c- hqmm)。我们证明c- hqmm等效于张量网络(更准确地说,是圆形局部纯化态)模型。这种等价性使我们能够为c- hqmm提供一个高效的学习模型。在六个真实数据集上对所提出的学习方法进行了评估,并证明了c- hqmm相对于hqmm和hmm的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信