{"title":"Exact propagating wave solutions in reaction cross-diffusion system","authors":"Abdullah Aldurayhim , Vadim N. Biktashev","doi":"10.1016/j.csfx.2020.100049","DOIUrl":null,"url":null,"abstract":"<div><p>Reaction-diffusion systems with cross-diffusion terms in addition to, or instead of, the usual self-diffusion demonstrate interesting features which motivate their further study. The present work is aimed at designing a toy reaction-cross-diffusion model with exact solutions in the form of propagating fronts. We propose a minimal model of this kind which involves two species linked by cross-diffusion, one of which governed by a linear equation and the other having a polynomial kinetic term. We classify the resulting exact propagating front solutions. Some of them have some features of the Fisher-KPP fronts and some features of the ZFK-Nagumo fronts.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"5 ","pages":"Article 100049"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054420300300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Reaction-diffusion systems with cross-diffusion terms in addition to, or instead of, the usual self-diffusion demonstrate interesting features which motivate their further study. The present work is aimed at designing a toy reaction-cross-diffusion model with exact solutions in the form of propagating fronts. We propose a minimal model of this kind which involves two species linked by cross-diffusion, one of which governed by a linear equation and the other having a polynomial kinetic term. We classify the resulting exact propagating front solutions. Some of them have some features of the Fisher-KPP fronts and some features of the ZFK-Nagumo fronts.