Exact propagating wave solutions in reaction cross-diffusion system

Q1 Mathematics
Abdullah Aldurayhim , Vadim N. Biktashev
{"title":"Exact propagating wave solutions in reaction cross-diffusion system","authors":"Abdullah Aldurayhim ,&nbsp;Vadim N. Biktashev","doi":"10.1016/j.csfx.2020.100049","DOIUrl":null,"url":null,"abstract":"<div><p>Reaction-diffusion systems with cross-diffusion terms in addition to, or instead of, the usual self-diffusion demonstrate interesting features which motivate their further study. The present work is aimed at designing a toy reaction-cross-diffusion model with exact solutions in the form of propagating fronts. We propose a minimal model of this kind which involves two species linked by cross-diffusion, one of which governed by a linear equation and the other having a polynomial kinetic term. We classify the resulting exact propagating front solutions. Some of them have some features of the Fisher-KPP fronts and some features of the ZFK-Nagumo fronts.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"5 ","pages":"Article 100049"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054420300300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Reaction-diffusion systems with cross-diffusion terms in addition to, or instead of, the usual self-diffusion demonstrate interesting features which motivate their further study. The present work is aimed at designing a toy reaction-cross-diffusion model with exact solutions in the form of propagating fronts. We propose a minimal model of this kind which involves two species linked by cross-diffusion, one of which governed by a linear equation and the other having a polynomial kinetic term. We classify the resulting exact propagating front solutions. Some of them have some features of the Fisher-KPP fronts and some features of the ZFK-Nagumo fronts.

反应交叉扩散系统的精确传播波解
除通常的自扩散项外,或代替自扩散项的反应扩散系统显示出有趣的特征,这些特征激发了它们的进一步研究。目前的工作旨在设计一个玩具反应-交叉扩散模型,其精确解以传播前沿的形式出现。我们提出了这类最小模型,它涉及两个由交叉扩散连接的物种,其中一个由线性方程控制,另一个具有多项式动力学项。我们对得到的精确传播前解进行分类。其中一些具有Fisher-KPP锋面的特征和zfk -南云锋面的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信