A textual analysis of the US Securities and Exchange Commission's accounting and auditing enforcement releases relating to the Sarbanes–Oxley Act

Q1 Economics, Econometrics and Finance
Sergio Davalos, Ehsan H. Feroz
{"title":"A textual analysis of the US Securities and Exchange Commission's accounting and auditing enforcement releases relating to the Sarbanes–Oxley Act","authors":"Sergio Davalos,&nbsp;Ehsan H. Feroz","doi":"10.1002/isaf.1506","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We focus on textual analysis of the US Securities and Exchange Commission's accounting and auditing enforcement releases (AAERs). Our research question is: Did the Sarbanes–Oxley Act (SOX) 2002 affect the qualitative linguistic content of the AAERs in the post-SOX period? To answer this question, we test the null hypotheses that there will be no differences in the qualitative verbiage and sentiment of AAERs in the time periods that we study related to the enactment of SOX: pre-SOX and post-SOX. To resolve the research question, we applied several text mining methods and classification machine-learning methods. We first used two basic text-mining methods, generating a bag of words and topic modeling, for descriptive analysis of the AAER content before the enactment of SOX and after the enforcement of SOX. We then conducted sentiment analysis using four sentiment dictionaries on the content of the two time periods: before SOX and after SOX. Finally, we developed three different classification models based on well-known supervised learning algorithms and determined that SOX-related AAERs could be distinguished from non-SOX-related AAERs. Based on the results, we conclude that there were significant linguistic differences in the AAER content of the post-SOX period compared with the pre-SOX period. In other words, post-SOX-related AAERs are qualitatively different in terms of linguistic contents and sentiment values compared with the non-SOX-related AAERs.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"29 1","pages":"19-40"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 4

Abstract

We focus on textual analysis of the US Securities and Exchange Commission's accounting and auditing enforcement releases (AAERs). Our research question is: Did the Sarbanes–Oxley Act (SOX) 2002 affect the qualitative linguistic content of the AAERs in the post-SOX period? To answer this question, we test the null hypotheses that there will be no differences in the qualitative verbiage and sentiment of AAERs in the time periods that we study related to the enactment of SOX: pre-SOX and post-SOX. To resolve the research question, we applied several text mining methods and classification machine-learning methods. We first used two basic text-mining methods, generating a bag of words and topic modeling, for descriptive analysis of the AAER content before the enactment of SOX and after the enforcement of SOX. We then conducted sentiment analysis using four sentiment dictionaries on the content of the two time periods: before SOX and after SOX. Finally, we developed three different classification models based on well-known supervised learning algorithms and determined that SOX-related AAERs could be distinguished from non-SOX-related AAERs. Based on the results, we conclude that there were significant linguistic differences in the AAER content of the post-SOX period compared with the pre-SOX period. In other words, post-SOX-related AAERs are qualitatively different in terms of linguistic contents and sentiment values compared with the non-SOX-related AAERs.

对美国证券交易委员会与《萨班斯-奥克斯利法案》有关的会计和审计执法发布的文本分析
我们专注于美国证券交易委员会的会计和审计执法发布(AAERs)的文本分析。我们的研究问题是:2002年萨班斯-奥克斯利法案(SOX)是否影响了后SOX时期AAERs的定性语言内容?为了回答这个问题,我们检验了零假设,即在我们研究的与SOX法案颁布相关的时间段(SOX法案实施前和SOX法案实施后),AAERs的定性措辞和情绪没有差异。为了解决研究问题,我们应用了几种文本挖掘方法和分类机器学习方法。我们首先使用了两种基本的文本挖掘方法,即生成单词包和主题建模,用于在SOX颁布之前和实施之后对AAER内容进行描述性分析。然后,我们使用四个情感词典对两个时间段的内容进行了情感分析:SOX之前和SOX之后。最后,我们基于著名的监督学习算法开发了三种不同的分类模型,并确定了sox相关的AAERs可以与非sox相关的AAERs区分开来。基于研究结果,我们得出结论,与sox前相比,sox后时期的AAER内容存在显著的语言差异。换句话说,与非sox相关的AAERs相比,后sox相关的AAERs在语言内容和情感价值方面存在质的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligent Systems in Accounting, Finance and Management
Intelligent Systems in Accounting, Finance and Management Economics, Econometrics and Finance-Finance
CiteScore
6.00
自引率
0.00%
发文量
0
期刊介绍: Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信