Bakht Zaman;Luis Miguel Lopez-Ramos;Baltasar Beferull-Lozano
{"title":"Online Joint Topology Identification and Signal Estimation From Streams With Missing Data","authors":"Bakht Zaman;Luis Miguel Lopez-Ramos;Baltasar Beferull-Lozano","doi":"10.1109/TSIPN.2023.3324569","DOIUrl":null,"url":null,"abstract":"Identifying the topology underlying a set of time series is useful for tasks such as prediction, denoising, and data completion. Vector autoregressive (VAR) model-based topologies capture dependencies among time series and are often inferred from observed spatio-temporal data. When data are affected by noise and/or missing samples, topology identification and signal recovery (reconstruction) tasks must be performed jointly. Additional challenges arise when i) the underlying topology is time-varying, ii) data become available sequentially, and iii) no delay is tolerated. This study proposes an online algorithm to overcome these challenges in estimating VAR model-based topologies, having constant complexity per iteration, which makes it interesting for big-data scenarios. The inexact proximal online gradient descent framework is used to derive a performance guarantee for the proposed algorithm, in the form of a dynamic regret bound. Numerical tests are also presented, showing the ability of the proposed algorithm to track time-varying topologies with missing data in an online fashion.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"9 ","pages":"691-704"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10285016/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Identifying the topology underlying a set of time series is useful for tasks such as prediction, denoising, and data completion. Vector autoregressive (VAR) model-based topologies capture dependencies among time series and are often inferred from observed spatio-temporal data. When data are affected by noise and/or missing samples, topology identification and signal recovery (reconstruction) tasks must be performed jointly. Additional challenges arise when i) the underlying topology is time-varying, ii) data become available sequentially, and iii) no delay is tolerated. This study proposes an online algorithm to overcome these challenges in estimating VAR model-based topologies, having constant complexity per iteration, which makes it interesting for big-data scenarios. The inexact proximal online gradient descent framework is used to derive a performance guarantee for the proposed algorithm, in the form of a dynamic regret bound. Numerical tests are also presented, showing the ability of the proposed algorithm to track time-varying topologies with missing data in an online fashion.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.