A novel optimized grey model with quadratic polynomials term and its application

Q1 Mathematics
Suzhen Li, Yuzhen Chen, Rui Dong
{"title":"A novel optimized grey model with quadratic polynomials term and its application","authors":"Suzhen Li,&nbsp;Yuzhen Chen,&nbsp;Rui Dong","doi":"10.1016/j.csfx.2022.100074","DOIUrl":null,"url":null,"abstract":"<div><p>The grey prediction model has been widely used in various fields and demonstrated good performance. However, when the data shows non-homogeneous exponential characteristic, the effect of the grey prediction model performs poorly. Therefore, a grey prediction model with a quadratic polynomial term (denoted as NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) is developed. The NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model is generalized, the GM(1,1) model, the GM(1,1,k) model, the SAIGM model and the GM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model are the special forms of it. Moreover, the parameter characteristics of the NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model and the effect on the modeling precision are evaluated under the multiplication transformation. To make the NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model more precise, we further analyze the error of the NGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model and propose a new model, named BNGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model, of which the background value is reconstructed based on the Simpson formula. Subsequently, the effectiveness of the new model is verified through four cases. The result shows that the prediction accuracy of the BNGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model is significantly improved. Finally, the BNGM(1,1,<span><math><msup><mi>k</mi><mn>2</mn></msup></math></span>) model is applied to analyse and predict the Gross Domestic Product (GDP) of Chongqing’s primary industry, the total power of Chongqing’s agricultural machinery and the GDP of Chongqing’s wholesale and retail trades, which shows the prediction performance of the new model is superior to other models.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"8 ","pages":"Article 100074"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590054422000045/pdfft?md5=1f2452e5bc1f5aa079de4ca7fa940d15&pid=1-s2.0-S2590054422000045-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054422000045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The grey prediction model has been widely used in various fields and demonstrated good performance. However, when the data shows non-homogeneous exponential characteristic, the effect of the grey prediction model performs poorly. Therefore, a grey prediction model with a quadratic polynomial term (denoted as NGM(1,1,k2) is developed. The NGM(1,1,k2) model is generalized, the GM(1,1) model, the GM(1,1,k) model, the SAIGM model and the GM(1,1,k2) model are the special forms of it. Moreover, the parameter characteristics of the NGM(1,1,k2) model and the effect on the modeling precision are evaluated under the multiplication transformation. To make the NGM(1,1,k2) model more precise, we further analyze the error of the NGM(1,1,k2) model and propose a new model, named BNGM(1,1,k2) model, of which the background value is reconstructed based on the Simpson formula. Subsequently, the effectiveness of the new model is verified through four cases. The result shows that the prediction accuracy of the BNGM(1,1,k2) model is significantly improved. Finally, the BNGM(1,1,k2) model is applied to analyse and predict the Gross Domestic Product (GDP) of Chongqing’s primary industry, the total power of Chongqing’s agricultural machinery and the GDP of Chongqing’s wholesale and retail trades, which shows the prediction performance of the new model is superior to other models.

一种新的二次多项式项优化灰色模型及其应用
灰色预测模型已广泛应用于各个领域,并取得了良好的效果。然而,当数据呈现非齐次指数特征时,灰色预测模型的效果较差。因此,建立了一个二次多项式项的灰色预测模型(记为NGM(1,1,k2))。对NGM(1,1,k2)模型进行了推广,GM(1,1)模型、GM(1,1,k)模型、SAIGM模型和GM(1,1,k2)模型是它的特殊形式。在乘法变换下,评价了NGM(1,1,k2)模型的参数特征及其对建模精度的影响。为了使NGM(1,1,k2)模型更加精确,我们进一步分析了NGM(1,1,k2)模型的误差,提出了一个新的模型,命名为BNGM(1,1,k2)模型,该模型的背景值基于Simpson公式重构。随后,通过四个案例验证了新模型的有效性。结果表明,BNGM(1,1,k2)模型的预测精度得到了显著提高。最后,运用BNGM(1,1,k2)模型对重庆市第一产业GDP、重庆市农机总功率和重庆市批发零售业GDP进行了分析预测,结果表明,新模型的预测效果优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信