Numerical analysis of a hybridized discontinuous Galerkin method for the Cahn–Hilliard problem

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Keegan L A Kirk, Beatrice Riviere, Rami Masri
{"title":"Numerical analysis of a hybridized discontinuous Galerkin method for the Cahn–Hilliard problem","authors":"Keegan L A Kirk, Beatrice Riviere, Rami Masri","doi":"10.1093/imanum/drad075","DOIUrl":null,"url":null,"abstract":"The mixed form of the Cahn–Hilliard equations is discretized by the hybridized discontinuous Galerkin method. For any chemical energy density, existence and uniqueness of the numerical solution is obtained. The scheme is proved to be unconditionally stable. Convergence of the method is obtained by deriving a priori error estimates that are valid for the Ginzburg–Landau chemical energy density and for convex domains. The paper also contains discrete functional tools, namely discrete Agmon and Gagliardo–Nirenberg inequalities, which are proved to be valid in the hybridizable discontinuous Galerkin spaces.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad075","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The mixed form of the Cahn–Hilliard equations is discretized by the hybridized discontinuous Galerkin method. For any chemical energy density, existence and uniqueness of the numerical solution is obtained. The scheme is proved to be unconditionally stable. Convergence of the method is obtained by deriving a priori error estimates that are valid for the Ginzburg–Landau chemical energy density and for convex domains. The paper also contains discrete functional tools, namely discrete Agmon and Gagliardo–Nirenberg inequalities, which are proved to be valid in the hybridizable discontinuous Galerkin spaces.
Cahn-Hilliard问题的杂化不连续Galerkin方法的数值分析
采用杂化不连续伽辽金方法对Cahn-Hilliard方程的混合形式进行离散。对于任意化学能密度,得到了数值解的存在唯一性。证明了该方案是无条件稳定的。通过推导对金兹堡-朗道化学能密度和凸域有效的先验误差估计,获得了该方法的收敛性。本文还包含离散泛函工具,即离散Agmon不等式和Gagliardo-Nirenberg不等式,证明了它们在可杂化不连续Galerkin空间中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信