Two-scale methods for the normalized infinity Laplacian: rates of convergence

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Wenbo Li, Abner J Salgado
{"title":"Two-scale methods for the normalized infinity Laplacian: rates of convergence","authors":"Wenbo Li, Abner J Salgado","doi":"10.1093/imanum/drad074","DOIUrl":null,"url":null,"abstract":"We propose a monotone and consistent numerical scheme for the approximation of the Dirichlet problem for the normalized infinity Laplacian, which could be related to the family of the so-called two-scale methods. We show that this method is convergent and prove rates of convergence. These rates depend not only on the regularity of the solution, but also on whether or not the right-hand side vanishes. Some extensions to this approach, like obstacle problems and symmetric Finsler norms, are also considered.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad074","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a monotone and consistent numerical scheme for the approximation of the Dirichlet problem for the normalized infinity Laplacian, which could be related to the family of the so-called two-scale methods. We show that this method is convergent and prove rates of convergence. These rates depend not only on the regularity of the solution, but also on whether or not the right-hand side vanishes. Some extensions to this approach, like obstacle problems and symmetric Finsler norms, are also considered.
归一化无穷拉普拉斯算子的双尺度方法:收敛速率
对于归一化无穷拉普拉斯算子,我们提出了Dirichlet问题近似的单调一致的数值格式,这可能与所谓的双尺度方法族有关。我们证明了这种方法是收敛的,并证明了收敛速度。这些速率不仅取决于解的规律性,还取决于右边是否消失。该方法的一些扩展,如障碍问题和对称Finsler规范,也被考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信