Single classifier vs. ensemble machine learning approaches for mental health prediction.

Q1 Computer Science
Jetli Chung, Jason Teo
{"title":"Single classifier vs. ensemble machine learning approaches for mental health prediction.","authors":"Jetli Chung, Jason Teo","doi":"10.1186/s40708-022-00180-6","DOIUrl":null,"url":null,"abstract":"<p><p>Early prediction of mental health issues among individuals is paramount for early diagnosis and treatment by mental health professionals. One of the promising approaches to achieving fully automated computer-based approaches for predicting mental health problems is via machine learning. As such, this study aims to empirically evaluate several popular machine learning algorithms in classifying and predicting mental health problems based on a given data set, both from a single classifier approach as well as an ensemble machine learning approach. The data set contains responses to a survey questionnaire that was conducted by Open Sourcing Mental Illness (OSMI). Machine learning algorithms investigated in this study include Logistic Regression, Gradient Boosting, Neural Networks, K-Nearest Neighbours, and Support Vector Machine, as well as an ensemble approach using these algorithms. Comparisons were also made against more recent machine learning approaches, namely Extreme Gradient Boosting and Deep Neural Networks. Overall, Gradient Boosting achieved the highest overall accuracy of 88.80% followed by Neural Networks with 88.00%. This was followed by Extreme Gradient Boosting and Deep Neural Networks at 87.20% and 86.40%, respectively. The ensemble classifier achieved 85.60% while the remaining classifiers achieved between 82.40 and 84.00%. The findings indicate that Gradient Boosting provided the highest classification accuracy for this particular mental health bi-classification prediction task. In general, it was also demonstrated that the prediction results produced by all of the machine learning approaches studied here were able to achieve more than 80% accuracy, thereby indicating a highly promising approach for mental health professionals toward automated clinical diagnosis.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810771/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-022-00180-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Early prediction of mental health issues among individuals is paramount for early diagnosis and treatment by mental health professionals. One of the promising approaches to achieving fully automated computer-based approaches for predicting mental health problems is via machine learning. As such, this study aims to empirically evaluate several popular machine learning algorithms in classifying and predicting mental health problems based on a given data set, both from a single classifier approach as well as an ensemble machine learning approach. The data set contains responses to a survey questionnaire that was conducted by Open Sourcing Mental Illness (OSMI). Machine learning algorithms investigated in this study include Logistic Regression, Gradient Boosting, Neural Networks, K-Nearest Neighbours, and Support Vector Machine, as well as an ensemble approach using these algorithms. Comparisons were also made against more recent machine learning approaches, namely Extreme Gradient Boosting and Deep Neural Networks. Overall, Gradient Boosting achieved the highest overall accuracy of 88.80% followed by Neural Networks with 88.00%. This was followed by Extreme Gradient Boosting and Deep Neural Networks at 87.20% and 86.40%, respectively. The ensemble classifier achieved 85.60% while the remaining classifiers achieved between 82.40 and 84.00%. The findings indicate that Gradient Boosting provided the highest classification accuracy for this particular mental health bi-classification prediction task. In general, it was also demonstrated that the prediction results produced by all of the machine learning approaches studied here were able to achieve more than 80% accuracy, thereby indicating a highly promising approach for mental health professionals toward automated clinical diagnosis.

Abstract Image

Abstract Image

用于心理健康预测的单一分类器与集合机器学习方法。
早期预测个人的心理健康问题对于心理健康专业人员进行早期诊断和治疗至关重要。要实现基于计算机的全自动心理健康问题预测方法,其中一个很有前景的方法就是通过机器学习。因此,本研究旨在根据给定的数据集,从单一分类器方法和集合机器学习方法两个方面,对几种流行的机器学习算法在分类和预测心理健康问题方面进行实证评估。该数据集包含 Open Sourcing Mental Illness(OSMI)所做调查问卷的回复。本研究调查的机器学习算法包括逻辑回归、梯度提升、神经网络、K-近邻和支持向量机,以及使用这些算法的集合方法。此外,还对最新的机器学习方法进行了比较,即极端梯度提升和深度神经网络。总体而言,梯度提升的总体准确率最高,达到 88.80%,其次是神经网络,为 88.00%。其次是极梯度提升和深度神经网络,分别为 87.20% 和 86.40%。集合分类器的准确率为 85.60%,其余分类器的准确率在 82.40% 到 84.00% 之间。研究结果表明,梯度提升法为这项特殊的心理健康双分类预测任务提供了最高的分类准确率。总体而言,本文研究的所有机器学习方法所产生的预测结果都能达到 80% 以上的准确率,从而为心理健康专业人员提供了一种极具前景的自动临床诊断方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信