Identifying driver modules based on multi-omics biological networks in prostate cancer

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhongli Chen, Biting Liang, Yingfu Wu, Haoru Zhou, Yuchen Wang, Hao Wu
{"title":"Identifying driver modules based on multi-omics biological networks in prostate cancer","authors":"Zhongli Chen,&nbsp;Biting Liang,&nbsp;Yingfu Wu,&nbsp;Haoru Zhou,&nbsp;Yuchen Wang,&nbsp;Hao Wu","doi":"10.1049/syb2.12050","DOIUrl":null,"url":null,"abstract":"<p>The development of sequencing technology has promoted the expansion of cancer genome data. It is necessary to identify the pathogenesis of cancer at the molecular level and explore reliable treatment methods and precise drug targets in cancer by identifying carcinogenic functional modules in massive multi-omics data. However, there are still limitations to identifying carcinogenic driver modules by utilising genetic characteristics simply. Therefore, this study proposes a computational method, NetAP, to identify driver modules in prostate cancer. Firstly, high mutual exclusivity, high coverage, and high topological similarity between genes are integrated to construct a weight function, which calculates the weight of gene pairs in a biological network. Secondly, the random walk method is utilised to reevaluate the strength of interaction among genes. Finally, the optimal driver modules are identified by utilising the affinity propagation algorithm. According to the results, the authors’ method identifies more validated driver genes and driver modules compared with the other previous methods. Thus, the proposed NetAP method can identify carcinogenic driver modules effectively and reliably, and the experimental results provide a powerful basis for cancer diagnosis, treatment and drug targets.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e8/7f/SYB2-16-187.PMC9675413.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12050","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The development of sequencing technology has promoted the expansion of cancer genome data. It is necessary to identify the pathogenesis of cancer at the molecular level and explore reliable treatment methods and precise drug targets in cancer by identifying carcinogenic functional modules in massive multi-omics data. However, there are still limitations to identifying carcinogenic driver modules by utilising genetic characteristics simply. Therefore, this study proposes a computational method, NetAP, to identify driver modules in prostate cancer. Firstly, high mutual exclusivity, high coverage, and high topological similarity between genes are integrated to construct a weight function, which calculates the weight of gene pairs in a biological network. Secondly, the random walk method is utilised to reevaluate the strength of interaction among genes. Finally, the optimal driver modules are identified by utilising the affinity propagation algorithm. According to the results, the authors’ method identifies more validated driver genes and driver modules compared with the other previous methods. Thus, the proposed NetAP method can identify carcinogenic driver modules effectively and reliably, and the experimental results provide a powerful basis for cancer diagnosis, treatment and drug targets.

Abstract Image

基于多组学生物学网络的前列腺癌驱动模块识别
测序技术的发展促进了癌症基因组数据的扩展。在海量多组学数据中识别致癌功能模块,有必要在分子水平上识别癌症的发病机制,探索癌症中可靠的治疗方法和精确的药物靶点。然而,通过简单地利用遗传特征来识别致癌驱动模块仍然存在局限性。因此,本研究提出了一种计算方法NetAP来识别前列腺癌的驱动模块。首先,将基因间的高互斥性、高覆盖度和高拓扑相似性整合构建权重函数,计算生物网络中基因对的权重;其次,利用随机游走法重新评估基因间相互作用的强度。最后,利用亲和传播算法确定最优驱动模块。结果表明,与其他方法相比,该方法鉴定出了更多经过验证的驱动基因和驱动模块。因此,提出的NetAP方法可以有效可靠地识别致癌驱动模块,实验结果为癌症的诊断、治疗和药物靶点提供了有力的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信