{"title":"Scorpionfish rapidly change colour in response to their background.","authors":"Leonie John, Matteo Santon, Nico K Michiels","doi":"10.1186/s12983-023-00488-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To facilitate background matching in heterogenous environments, some animals rapidly change body colouration. Marine predatory fishes might use this ability to hide from predators and prey. Here, we focus on scorpionfishes (Scorpaenidae), well-camouflaged, bottom-dwelling sit-and-wait predators. We tested whether Scorpaena maderensis and Scorpaena porcus adjust body luminance and hue in response to three artificial backgrounds and thereby achieve background matching. Both scorpionfish species are also red fluorescent, which could contribute to background matching at depth. Therefore, we tested whether red fluorescence is also regulated in response to different backgrounds. The darkest and the lightest backgrounds were grey, while the third background was orange of intermediate luminance. Scorpionfish were placed on all three backgrounds in a randomised repeated measures design. We documented changes in scorpionfish luminance and hue with image analysis and calculated contrast to the backgrounds. Changes were quantified from the visual perspective of two potential prey fishes, the triplefin Tripterygion delaisi and the goby Pomatoschistus flavescens. Additionally, we measured changes in the area of scorpionfish red fluorescence. Because scorpionfish changed quicker than initially expected, we measured luminance change at a higher temporal resolution in a second experiment.</p><p><strong>Results: </strong>Both scorpionfish species rapidly adjusted luminance and hue in response to a change of background. From prey visual perspective, scorpionfishes' body achromatic and chromatic contrasts against the background were high, indicating imperfect background matching. Chromatic contrasts differed considerably between the two observer species, highlighting the importance of choosing natural observers with care when studying camouflage. Scorpionfish displayed larger areas of red fluorescence with increasing luminance of the background. With the second experiment, we showed that about 50% of the total luminance change observed after one minute is achieved very rapidly, in five to ten seconds.</p><p><strong>Conclusion: </strong>Both scorpionfish species change body luminance and hue in response to different backgrounds within seconds. While the achieved background matching was suboptimal for the artificial backgrounds, we propose that the observed changes were intended to reduce detectability, and are an essential strategy to camouflage in the natural environment.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-023-00488-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To facilitate background matching in heterogenous environments, some animals rapidly change body colouration. Marine predatory fishes might use this ability to hide from predators and prey. Here, we focus on scorpionfishes (Scorpaenidae), well-camouflaged, bottom-dwelling sit-and-wait predators. We tested whether Scorpaena maderensis and Scorpaena porcus adjust body luminance and hue in response to three artificial backgrounds and thereby achieve background matching. Both scorpionfish species are also red fluorescent, which could contribute to background matching at depth. Therefore, we tested whether red fluorescence is also regulated in response to different backgrounds. The darkest and the lightest backgrounds were grey, while the third background was orange of intermediate luminance. Scorpionfish were placed on all three backgrounds in a randomised repeated measures design. We documented changes in scorpionfish luminance and hue with image analysis and calculated contrast to the backgrounds. Changes were quantified from the visual perspective of two potential prey fishes, the triplefin Tripterygion delaisi and the goby Pomatoschistus flavescens. Additionally, we measured changes in the area of scorpionfish red fluorescence. Because scorpionfish changed quicker than initially expected, we measured luminance change at a higher temporal resolution in a second experiment.
Results: Both scorpionfish species rapidly adjusted luminance and hue in response to a change of background. From prey visual perspective, scorpionfishes' body achromatic and chromatic contrasts against the background were high, indicating imperfect background matching. Chromatic contrasts differed considerably between the two observer species, highlighting the importance of choosing natural observers with care when studying camouflage. Scorpionfish displayed larger areas of red fluorescence with increasing luminance of the background. With the second experiment, we showed that about 50% of the total luminance change observed after one minute is achieved very rapidly, in five to ten seconds.
Conclusion: Both scorpionfish species change body luminance and hue in response to different backgrounds within seconds. While the achieved background matching was suboptimal for the artificial backgrounds, we propose that the observed changes were intended to reduce detectability, and are an essential strategy to camouflage in the natural environment.
期刊介绍:
Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.
Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.
The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.