Zehuai Guo, Xiangjun Qi, Zeyun Li, Jianying Yang, Zhe Sun, Peiqin Li, Ming Chen, Yang Cao
{"title":"Development and validation of an immune-related gene signature for prognosis in Lung adenocarcinoma","authors":"Zehuai Guo, Xiangjun Qi, Zeyun Li, Jianying Yang, Zhe Sun, Peiqin Li, Ming Chen, Yang Cao","doi":"10.1049/syb2.12057","DOIUrl":null,"url":null,"abstract":"<p>The most common type of lung cancer tissue is lung adenocarcinoma. The TCGA-LUAD cohort retrieved from the TCGA dataset was considered the internal training cohort, while GSE68465 and GSE13213 datasets from the GEO database were used as the external test cohort. The TCGA-LUAD cohort was classified into two immune subtypes using single-sample gene set enrichment analysis of the immune gene set and unsupervised clustering analysis. The ESTIMATE algorithm, the CIBERSORT algorithm, and HLA family expression levels again validated the reliability of this typing. We performed Venn analysis using immune-related genes from the immport dataset and differentially expressed genes from the subtypes to retrieve differentially expressed immune genes (DEIGs). In addition, DEIGs were used to construct a prognostic model with the least absolute shrinkage and selection operator regression analysis. A reliable risk model consisting of 11 DEIGs, including S100P, INHA, SEMA7A, INSL4, CD40LG, AGER, SERPIND1, CD1D, CX3CR1, SFTPD, and CD79A, was then built, and its reliability was further confirmed by ROC curve and calibration plot analysis. The high-risk score subgroup had a poor prognosis and a lower tumour immune dysfunction and exclusion score, indicating a greater likelihood of anti-PD-1/cytotoxic T lymphocyte antigen 4 benefit.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"17 1","pages":"27-38"},"PeriodicalIF":1.9000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7a/3e/SYB2-17-27.PMC9931057.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12057","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The most common type of lung cancer tissue is lung adenocarcinoma. The TCGA-LUAD cohort retrieved from the TCGA dataset was considered the internal training cohort, while GSE68465 and GSE13213 datasets from the GEO database were used as the external test cohort. The TCGA-LUAD cohort was classified into two immune subtypes using single-sample gene set enrichment analysis of the immune gene set and unsupervised clustering analysis. The ESTIMATE algorithm, the CIBERSORT algorithm, and HLA family expression levels again validated the reliability of this typing. We performed Venn analysis using immune-related genes from the immport dataset and differentially expressed genes from the subtypes to retrieve differentially expressed immune genes (DEIGs). In addition, DEIGs were used to construct a prognostic model with the least absolute shrinkage and selection operator regression analysis. A reliable risk model consisting of 11 DEIGs, including S100P, INHA, SEMA7A, INSL4, CD40LG, AGER, SERPIND1, CD1D, CX3CR1, SFTPD, and CD79A, was then built, and its reliability was further confirmed by ROC curve and calibration plot analysis. The high-risk score subgroup had a poor prognosis and a lower tumour immune dysfunction and exclusion score, indicating a greater likelihood of anti-PD-1/cytotoxic T lymphocyte antigen 4 benefit.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.