Data analytics and knowledge management approach for COVID-19 prediction and control.

Iqbal Hasan, Prince Dhawan, S A M Rizvi, Sanjay Dhir
{"title":"Data analytics and knowledge management approach for COVID-19 prediction and control.","authors":"Iqbal Hasan, Prince Dhawan, S A M Rizvi, Sanjay Dhir","doi":"10.1007/s41870-022-00967-0","DOIUrl":null,"url":null,"abstract":"<p><p>The Coronavirus Disease (COVID-19) caused by SARS-CoV-2, continues to be a global threat. The major global concern among scientists and researchers is to develop innovative digital solutions for prediction and control of infection and to discover drugs for its cure. In this paper we developed a strategic technical solution for surveillance and control of COVID-19 in Delhi-National Capital Region (NCR). This work aims to elucidate the Delhi COVID-19 Data Management Framework, the backend mechanism of integrated Command and Control Center (iCCC) with plugged-in modules for various administrative, medical and field operations. Based on the time-series data extracted from iCCC repository, the forecasting of COVID-19 spread has been carried out for Delhi using the Auto-Regressive Integrated Moving Average (ARIMA) model as it can effectively predict the logistics requirements, active cases, positive patients, and death rate. The intelligence generated through this research has paved the way for the Government of National Capital Territory Delhi to strategize COVID-19 related policies formulation and implementation on real time basis. The outcome of this innovative work has led to the drastic reduction in COVID-19 positive cases and deaths in Delhi-NCR.</p>","PeriodicalId":73455,"journal":{"name":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188422/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-022-00967-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Coronavirus Disease (COVID-19) caused by SARS-CoV-2, continues to be a global threat. The major global concern among scientists and researchers is to develop innovative digital solutions for prediction and control of infection and to discover drugs for its cure. In this paper we developed a strategic technical solution for surveillance and control of COVID-19 in Delhi-National Capital Region (NCR). This work aims to elucidate the Delhi COVID-19 Data Management Framework, the backend mechanism of integrated Command and Control Center (iCCC) with plugged-in modules for various administrative, medical and field operations. Based on the time-series data extracted from iCCC repository, the forecasting of COVID-19 spread has been carried out for Delhi using the Auto-Regressive Integrated Moving Average (ARIMA) model as it can effectively predict the logistics requirements, active cases, positive patients, and death rate. The intelligence generated through this research has paved the way for the Government of National Capital Territory Delhi to strategize COVID-19 related policies formulation and implementation on real time basis. The outcome of this innovative work has led to the drastic reduction in COVID-19 positive cases and deaths in Delhi-NCR.

Abstract Image

Abstract Image

Abstract Image

用于 COVID-19 预测和控制的数据分析和知识管理方法。
由 SARS-CoV-2 引起的冠状病毒病(COVID-19)仍是一个全球性威胁。全球科学家和研究人员关注的主要问题是开发创新的数字解决方案,用于预测和控制感染,并发现治愈该疾病的药物。在本文中,我们为德里-国家首都地区(NCR)监测和控制 COVID-19 开发了一个战略性技术解决方案。这项工作旨在阐明德里 COVID-19 数据管理框架、集成指挥与控制中心(iCCC)的后台机制以及各种行政、医疗和现场操作的插件模块。根据从 iCCC 储存库中提取的时间序列数据,利用自回归综合移动平均(ARIMA)模型对德里的 COVID-19 传播进行了预测,因为该模型可以有效预测后勤需求、活动病例、阳性患者和死亡率。这项研究产生的情报为德里国家首都直辖区政府实时制定和实施 COVID-19 相关政策的战略铺平了道路。这项创新工作的成果使得德里-国家首都直辖区的 COVID-19 阳性病例和死亡人数大幅减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信