Lisa M Jorgenson, Lindsey Knight, Ray E Widner, Elizabeth A Rucks
{"title":"Eukaryotic Clathrin Adapter Protein and Mediator of Cholesterol Homeostasis, PICALM, Affects Trafficking to the Chlamydial Inclusion.","authors":"Lisa M Jorgenson, Lindsey Knight, Ray E Widner, Elizabeth A Rucks","doi":"10.1080/10985549.2023.2171695","DOIUrl":null,"url":null,"abstract":"<p><p>The obligate intracellular pathogen <i>Chlamydia trachomatis</i> has unique metabolic requirements as it proceeds through its biphasic developmental cycle from within the inclusion within the host cell. In our previous study, we identified a host protein, PICALM, which localizes to the chlamydial inclusion. PICALM functions in many host pathways including the recycling of receptors, specific SNARE proteins, and molecules like transferrin, and maintaining cholesterol homeostasis. Hence, we hypothesized that PICALM functions to maintain the cholesterol content and to moderate trafficking from the endosomal recycling pathway to the inclusion, which controls chlamydial access to this pathway. In uninfected cells, siRNA knockdown of PICALM resulted in increased cholesterol within the Golgi and transferrin receptor (TfR) positive vesicles (recycling endosomes). PICALM knockdown in cells infected with <i>C. trachomatis</i> resulted in increased levels of Golgi-derived lipid and protein, TfR, transferrin, and Rab11-FIP1 localized to inclusions and a decrease of Golgi fragmentation at and Rab11 trafficking to the inclusion. Interestingly, chlamydial infection alone also increases cholesterol in TfR and Rab11-associated vesicles, and PICALM knockdown reverses this effect. Our data suggest that PICALM functions to balance or limit chlamydial access to multiple subcellular trafficking pathways to maintain the health of the host cell during chlamydial infection.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"1-13"},"PeriodicalIF":3.2000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2023.2171695","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The obligate intracellular pathogen Chlamydia trachomatis has unique metabolic requirements as it proceeds through its biphasic developmental cycle from within the inclusion within the host cell. In our previous study, we identified a host protein, PICALM, which localizes to the chlamydial inclusion. PICALM functions in many host pathways including the recycling of receptors, specific SNARE proteins, and molecules like transferrin, and maintaining cholesterol homeostasis. Hence, we hypothesized that PICALM functions to maintain the cholesterol content and to moderate trafficking from the endosomal recycling pathway to the inclusion, which controls chlamydial access to this pathway. In uninfected cells, siRNA knockdown of PICALM resulted in increased cholesterol within the Golgi and transferrin receptor (TfR) positive vesicles (recycling endosomes). PICALM knockdown in cells infected with C. trachomatis resulted in increased levels of Golgi-derived lipid and protein, TfR, transferrin, and Rab11-FIP1 localized to inclusions and a decrease of Golgi fragmentation at and Rab11 trafficking to the inclusion. Interestingly, chlamydial infection alone also increases cholesterol in TfR and Rab11-associated vesicles, and PICALM knockdown reverses this effect. Our data suggest that PICALM functions to balance or limit chlamydial access to multiple subcellular trafficking pathways to maintain the health of the host cell during chlamydial infection.
期刊介绍:
Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.