{"title":"A novel DNA double-strand breaks biosensor based on fluorescence resonance energy transfer.","authors":"Jung-Soo Suh, Tae-Jin Kim","doi":"10.1186/s40824-023-00354-1","DOIUrl":null,"url":null,"abstract":"<p><p>Revealing the spatiotemporal behavior of DNA double-strand breaks (DSBs) is crucial for understanding the processes of DNA damage and repair. Traditionally, γH2AX and DNA damage response (DDR) factors have been used to detect DSBs using classical biochemical assays, such as antibody-based immunostaining. However, a reliable method to visualize and assess DSB activity real-time in living cells is yet to be established. Herein, we developed a novel DNA double-strand breaks biosensor (DSBS) based on fluorescence resonance energy transfer (FRET) by employing the H2AX and BRCT1 domains. By applying FRET imaging with DSBS, we show that DSBS specifically reacts to drug- or ionizing radiation (IR)-induced γH2AX activity, allowing for the quantification of DSB events at high spatiotemporal resolutions. Taken together, we provide a new experimental tool to evaluate the spatiotemporal dynamics of DNA double-strand breaks. Ultimately, our biosensor can be useful for elucidating the molecular mechanisms underlying DNA damage and repair processes.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936723/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40824-023-00354-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Revealing the spatiotemporal behavior of DNA double-strand breaks (DSBs) is crucial for understanding the processes of DNA damage and repair. Traditionally, γH2AX and DNA damage response (DDR) factors have been used to detect DSBs using classical biochemical assays, such as antibody-based immunostaining. However, a reliable method to visualize and assess DSB activity real-time in living cells is yet to be established. Herein, we developed a novel DNA double-strand breaks biosensor (DSBS) based on fluorescence resonance energy transfer (FRET) by employing the H2AX and BRCT1 domains. By applying FRET imaging with DSBS, we show that DSBS specifically reacts to drug- or ionizing radiation (IR)-induced γH2AX activity, allowing for the quantification of DSB events at high spatiotemporal resolutions. Taken together, we provide a new experimental tool to evaluate the spatiotemporal dynamics of DNA double-strand breaks. Ultimately, our biosensor can be useful for elucidating the molecular mechanisms underlying DNA damage and repair processes.
期刊介绍:
Biomaterials Research, the official journal of the Korean Society for Biomaterials, is an open-access interdisciplinary publication that focuses on all aspects of biomaterials research. The journal covers a wide range of topics including novel biomaterials, advanced techniques for biomaterial synthesis and fabrication, and their application in biomedical fields. Specific areas of interest include functional biomaterials, drug and gene delivery systems, tissue engineering, nanomedicine, nano/micro-biotechnology, bio-imaging, regenerative medicine, medical devices, 3D printing, and stem cell research. By exploring these research areas, Biomaterials Research aims to provide valuable insights and promote advancements in the biomaterials field.