The scaling of physics-informed machine learning with data and dimensions

Q1 Mathematics
Scott T. Miller , John F. Lindner , Anshul Choudhary , Sudeshna Sinha , William L. Ditto
{"title":"The scaling of physics-informed machine learning with data and dimensions","authors":"Scott T. Miller ,&nbsp;John F. Lindner ,&nbsp;Anshul Choudhary ,&nbsp;Sudeshna Sinha ,&nbsp;William L. Ditto","doi":"10.1016/j.csfx.2020.100046","DOIUrl":null,"url":null,"abstract":"<div><p>We quantify how incorporating physics into neural network design can significantly improve the learning and forecasting of dynamical systems, even nonlinear systems of many dimensions. We train conventional and Hamiltonian neural networks on increasingly difficult dynamical systems and compute their forecasting errors as the number of training data and number of system dimensions vary. A map-building perspective elucidates the superiority of Hamiltonian neural networks. The results clarify the critical relation among data, dimension, and neural network learning performance.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"5 ","pages":"Article 100046"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100046","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054420300270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11

Abstract

We quantify how incorporating physics into neural network design can significantly improve the learning and forecasting of dynamical systems, even nonlinear systems of many dimensions. We train conventional and Hamiltonian neural networks on increasingly difficult dynamical systems and compute their forecasting errors as the number of training data and number of system dimensions vary. A map-building perspective elucidates the superiority of Hamiltonian neural networks. The results clarify the critical relation among data, dimension, and neural network learning performance.

基于物理的机器学习的数据和维度缩放
我们量化了将物理学纳入神经网络设计如何显著改善动态系统的学习和预测,甚至是多维非线性系统。我们在难度越来越大的动态系统上训练常规神经网络和哈密顿神经网络,并随着训练数据的数量和系统维数的变化计算其预测误差。地图构建的观点阐明了哈密顿神经网络的优越性。结果阐明了数据、维度和神经网络学习性能之间的关键关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信