Image Quality Classification for Automated Visual Evaluation of Cervical Precancer.

Zhiyun Xue, Sandeep Angara, Peng Guo, Sivaramakrishnan Rajaraman, Jose Jeronimo, Ana Cecilia Rodriguez, Karla Alfaro, Kittipat Charoenkwan, Chemtai Mungo, Joel Fokom Domgue, Nicolas Wentzensen, Kanan T Desai, Kayode Olusegun Ajenifuja, Elisabeth Wikström, Brian Befano, Silvia de Sanjosé, Mark Schiffman, Sameer Antani
{"title":"Image Quality Classification for Automated Visual Evaluation of Cervical Precancer.","authors":"Zhiyun Xue,&nbsp;Sandeep Angara,&nbsp;Peng Guo,&nbsp;Sivaramakrishnan Rajaraman,&nbsp;Jose Jeronimo,&nbsp;Ana Cecilia Rodriguez,&nbsp;Karla Alfaro,&nbsp;Kittipat Charoenkwan,&nbsp;Chemtai Mungo,&nbsp;Joel Fokom Domgue,&nbsp;Nicolas Wentzensen,&nbsp;Kanan T Desai,&nbsp;Kayode Olusegun Ajenifuja,&nbsp;Elisabeth Wikström,&nbsp;Brian Befano,&nbsp;Silvia de Sanjosé,&nbsp;Mark Schiffman,&nbsp;Sameer Antani","doi":"10.1007/978-3-031-16760-7_20","DOIUrl":null,"url":null,"abstract":"<p><p>Image quality control is a critical element in the process of data collection and cleaning. Both manual and automated analyses alike are adversely impacted by bad quality data. There are several factors that can degrade image quality and, correspondingly, there are many approaches to mitigate their negative impact. In this paper, we address image quality control toward our goal of improving the performance of automated visual evaluation (AVE) for cervical precancer screening. Specifically, we report efforts made toward classifying images into four quality categories (\"unusable\", \"unsatisfactory\", \"limited\", and \"evaluable\") and improving the quality classification performance by automatically identifying mislabeled and overly ambiguous images. The proposed new deep learning ensemble framework is an integration of several networks that consists of three main components: cervix detection, mislabel identification, and quality classification. We evaluated our method using a large dataset that comprises 87,420 images obtained from 14,183 patients through several cervical cancer studies conducted by different providers using different imaging devices in different geographic regions worldwide. The proposed ensemble approach achieved higher performance than the baseline approaches.</p>","PeriodicalId":74146,"journal":{"name":"Medical image learning with limited and noisy data : first international workshop, MILLanD 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings. MILLanD (Workshop) (1st : 2022 : Singapore)","volume":"13559 ","pages":"206-217"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614805/pdf/nihms-1840611.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image learning with limited and noisy data : first international workshop, MILLanD 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings. MILLanD (Workshop) (1st : 2022 : Singapore)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-16760-7_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image quality control is a critical element in the process of data collection and cleaning. Both manual and automated analyses alike are adversely impacted by bad quality data. There are several factors that can degrade image quality and, correspondingly, there are many approaches to mitigate their negative impact. In this paper, we address image quality control toward our goal of improving the performance of automated visual evaluation (AVE) for cervical precancer screening. Specifically, we report efforts made toward classifying images into four quality categories ("unusable", "unsatisfactory", "limited", and "evaluable") and improving the quality classification performance by automatically identifying mislabeled and overly ambiguous images. The proposed new deep learning ensemble framework is an integration of several networks that consists of three main components: cervix detection, mislabel identification, and quality classification. We evaluated our method using a large dataset that comprises 87,420 images obtained from 14,183 patients through several cervical cancer studies conducted by different providers using different imaging devices in different geographic regions worldwide. The proposed ensemble approach achieved higher performance than the baseline approaches.

用于宫颈癌前病变自动视觉评估的图像质量分类。
图像质量控制是数据收集和清理过程中的一个关键因素。手动和自动分析都会受到不良质量数据的不利影响。有几个因素会降低图像质量,相应地,有许多方法可以减轻它们的负面影响。在本文中,我们致力于图像质量控制,以提高宫颈癌前筛查的自动视觉评估(AVE)的性能。具体而言,我们报告了将图像分为四个质量类别(“不可用”、“不令人满意”、“有限”和“可评估”)的努力,并通过自动识别标签错误和过于模糊的图像来提高质量分类性能。所提出的新的深度学习集成框架是几个网络的集成,由三个主要组成部分组成:宫颈检测、标签错误识别和质量分类。我们使用一个大型数据集对我们的方法进行了评估,该数据集包括从14183名患者中获得的87420张图像,这些患者是通过全球不同地理区域的不同提供者使用不同成像设备进行的几项癌症研究获得的。所提出的集成方法实现了比基线方法更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信