Development and validation of a transcriptomic signature-based model as the predictive, preventive, and personalized medical strategy for preterm birth within 7 days in threatened preterm labor women.

IF 6.5 2区 医学 Q1 Medicine
Yuxin Ran, Jie He, Wei Peng, Zheng Liu, Youwen Mei, Yunqian Zhou, Nanlin Yin, Hongbo Qi
{"title":"Development and validation of a transcriptomic signature-based model as the predictive, preventive, and personalized medical strategy for preterm birth within 7 days in threatened preterm labor women.","authors":"Yuxin Ran,&nbsp;Jie He,&nbsp;Wei Peng,&nbsp;Zheng Liu,&nbsp;Youwen Mei,&nbsp;Yunqian Zhou,&nbsp;Nanlin Yin,&nbsp;Hongbo Qi","doi":"10.1007/s13167-021-00268-9","DOIUrl":null,"url":null,"abstract":"<p><p>Preterm birth (PTB) is the leading cause of neonatal death. The essential strategy to prevent PTB is the accurate identification of threatened preterm labor (TPTL) women who will have PTB in a short time (< 7 days). Here, we aim to propose a clinical model to contribute to the effective prediction, precise prevention, and personalized medical treatment for PTB < 7 days in TPTL women through bioinformatics analysis and prospective cohort studies. In this study, the 1090 key genes involved in PTB < 7 days in the peripheral blood of TPTL women were ascertained using WGCNA. Based on this, the biological basis of immune-inflammatory activation (e.g., IFNγ and TNFα signaling) as well as immune cell disorders (e.g., monocytes and Th17 cells) in PTB < 7 days were revealed. Then, four core genes (JOSD1, IDNK, ZMYM3, and IL1B) that best represent their transcriptomic characteristics were screened by SVM and LASSO algorithm. Therefore, a prediction model with an AUC of 0.907 was constructed, which was validated in a larger population (AUC = 0.783). Moreover, the predictive value (AUC = 0.957) and clinical feasibility of this model were verified through the clinical prospective cohort we established. In conclusion, in the context of Predictive, Preventive, and Personalized Medicine (3PM), we have developed and validated a model to predict PTB < 7 days in TPTL women. This is promising to greatly improve the accuracy of clinical prediction, which would facilitate the personalized management of TPTL women to precisely prevent PTB < 7 days and improve maternal-fetal outcomes.</p>","PeriodicalId":54292,"journal":{"name":"Epma Journal","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897543/pdf/13167_2021_Article_268.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epma Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13167-021-00268-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2

Abstract

Preterm birth (PTB) is the leading cause of neonatal death. The essential strategy to prevent PTB is the accurate identification of threatened preterm labor (TPTL) women who will have PTB in a short time (< 7 days). Here, we aim to propose a clinical model to contribute to the effective prediction, precise prevention, and personalized medical treatment for PTB < 7 days in TPTL women through bioinformatics analysis and prospective cohort studies. In this study, the 1090 key genes involved in PTB < 7 days in the peripheral blood of TPTL women were ascertained using WGCNA. Based on this, the biological basis of immune-inflammatory activation (e.g., IFNγ and TNFα signaling) as well as immune cell disorders (e.g., monocytes and Th17 cells) in PTB < 7 days were revealed. Then, four core genes (JOSD1, IDNK, ZMYM3, and IL1B) that best represent their transcriptomic characteristics were screened by SVM and LASSO algorithm. Therefore, a prediction model with an AUC of 0.907 was constructed, which was validated in a larger population (AUC = 0.783). Moreover, the predictive value (AUC = 0.957) and clinical feasibility of this model were verified through the clinical prospective cohort we established. In conclusion, in the context of Predictive, Preventive, and Personalized Medicine (3PM), we have developed and validated a model to predict PTB < 7 days in TPTL women. This is promising to greatly improve the accuracy of clinical prediction, which would facilitate the personalized management of TPTL women to precisely prevent PTB < 7 days and improve maternal-fetal outcomes.

Abstract Image

Abstract Image

基于转录组特征的模型的开发和验证,作为预测、预防和个性化的医疗策略,在7天内早产的威胁早产妇女。
早产(PTB)是新生儿死亡的主要原因。预防PTB的基本策略是准确识别在短时间内将患PTB的先兆早产(TPTL)妇女。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epma Journal
Epma Journal Medicine-Biochemistry (medical)
CiteScore
11.30
自引率
23.10%
发文量
0
期刊介绍: PMA Journal is a journal of predictive, preventive and personalized medicine (PPPM). The journal provides expert viewpoints and research on medical innovations and advanced healthcare using predictive diagnostics, targeted preventive measures and personalized patient treatments. The journal is indexed by PubMed, Embase and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信