{"title":"Temporal State Machines: Using Temporal Memory to Stitch Time-based Graph Computations.","authors":"Advait Madhavan, Matthew W Daniels, Mark D Stiles","doi":"10.1145/3451214","DOIUrl":null,"url":null,"abstract":"<p><p>Race logic, an arrival-time-coded logic family, has demonstrated energy and performance improvements for applications ranging from dynamic programming to machine learning. However, the various <i>ad hoc</i> mappings of algorithms into hardware rely on researcher ingenuity and result in custom architectures that are difficult to systematize. We propose to associate race logic with the mathematical field of tropical algebra, enabling a more methodical approach toward building temporal circuits. This association between the mathematical primitives of tropical algebra and generalized race logic computations guides the design of temporally coded tropical circuits. It also serves as a framework for expressing high-level timing-based algorithms. This abstraction, when combined with temporal memory, allows for the systematic exploration of race logic-based temporal architectures by making it possible to partition feed-forward computations into stages and organize them into a state machine. We leverage analog memristor-based temporal memories to design such a state machine that operates purely on time-coded wavefronts. We implement a version of Dijkstra's algorithm to evaluate this temporal state machine. This demonstration shows the promise of expanding the expressibility of temporal computing to enable it to deliver significant energy and throughput advantages.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"17 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3451214","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3451214","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2
Abstract
Race logic, an arrival-time-coded logic family, has demonstrated energy and performance improvements for applications ranging from dynamic programming to machine learning. However, the various ad hoc mappings of algorithms into hardware rely on researcher ingenuity and result in custom architectures that are difficult to systematize. We propose to associate race logic with the mathematical field of tropical algebra, enabling a more methodical approach toward building temporal circuits. This association between the mathematical primitives of tropical algebra and generalized race logic computations guides the design of temporally coded tropical circuits. It also serves as a framework for expressing high-level timing-based algorithms. This abstraction, when combined with temporal memory, allows for the systematic exploration of race logic-based temporal architectures by making it possible to partition feed-forward computations into stages and organize them into a state machine. We leverage analog memristor-based temporal memories to design such a state machine that operates purely on time-coded wavefronts. We implement a version of Dijkstra's algorithm to evaluate this temporal state machine. This demonstration shows the promise of expanding the expressibility of temporal computing to enable it to deliver significant energy and throughput advantages.
期刊介绍:
The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system.
The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors