Sharp Sobolev Inequalities via Projection Averages.

IF 1.2 2区 数学 Q1 MATHEMATICS
Philipp Kniefacz, Franz E Schuster
{"title":"Sharp Sobolev Inequalities via Projection Averages.","authors":"Philipp Kniefacz,&nbsp;Franz E Schuster","doi":"10.1007/s12220-020-00544-6","DOIUrl":null,"url":null,"abstract":"<p><p>A family of sharp <math><msup><mi>L</mi> <mi>p</mi></msup> </math> Sobolev inequalities is established by averaging the length of <i>i</i>-dimensional projections of the gradient of a function. Moreover, it is shown that each of these new inequalities directly implies the classical <math><msup><mi>L</mi> <mi>p</mi></msup> </math>  Sobolev inequality of Aubin and Talenti and that the strongest member of this family is the only affine invariant one among them-the affine <math><msup><mi>L</mi> <mi>p</mi></msup> </math>  Sobolev inequality of Lutwak, Yang, and Zhang. When <math><mrow><mi>p</mi> <mo>=</mo> <mn>1</mn></mrow> </math> , the entire family of new Sobolev inequalities is extended to functions of bounded variation to also allow for a complete classification of all extremal functions in this case.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-020-00544-6","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-020-00544-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

A family of sharp L p Sobolev inequalities is established by averaging the length of i-dimensional projections of the gradient of a function. Moreover, it is shown that each of these new inequalities directly implies the classical L p  Sobolev inequality of Aubin and Talenti and that the strongest member of this family is the only affine invariant one among them-the affine L p  Sobolev inequality of Lutwak, Yang, and Zhang. When p = 1 , the entire family of new Sobolev inequalities is extended to functions of bounded variation to also allow for a complete classification of all extremal functions in this case.

投影平均的尖锐Sobolev不等式。
通过对函数梯度的i维投影的长度求平均值,建立了一类尖锐的L p Sobolev不等式。此外,还证明了这些新不等式中的每一个都直接暗示了Aubin和Talenti的经典L p Sobolev不等式,并且该家族中最强的成员是其中唯一的仿射不变量- Lutwak, Yang和Zhang的仿射L p Sobolev不等式。当p = 1时,整个新Sobolev不等式族被推广到有界变分函数,从而也允许在这种情况下对所有极值函数进行完全分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信