Research Methodology and Mechanisms of Action of Current Orthopaedic Implant Coatings.

Q3 Dentistry
Syed Abdullah Syeddan
{"title":"Research Methodology and Mechanisms of Action of Current Orthopaedic Implant Coatings.","authors":"Syed Abdullah Syeddan","doi":"10.1615/JLongTermEffMedImplants.2022040062","DOIUrl":null,"url":null,"abstract":"<p><p>Orthopedic implants are crucial interventions that are gaining greater importance in modern medicine to restore function to commonly affected joints. Each implantation carries the risk of implant-associated infection and loosening of the implant due to improper integration with soft tissue. Coating strategies have been developed to aid the growth of bone into the implant (osteointegration) and prevent biofilm formation to avoid infection. In this review, primary articles highlighting recent developments and advancements in orthopedic implant coating will be presented. Additionally, the methodology of the articles will be critiqued based on this research criteria: establishment of function on a theoretical basis, validation of coating function, and potential next steps/improvements based on results. A theoretical basis based on understanding the mechanisms at play of these various coatings allows for systems to be developed to tackle the tasks of osteointegration, subversion of infection, and avoidance of cytotoxicity. The current state of research methodology in coating design focuses too heavily on either osteointegration or the prevention of infection, thus, future development in medical implant coating needs to investigate the creation of a coating that accomplishes both tasks. Additionally, next steps and improvements to systems need to be better highlighted to move forward when problems arise within a system. Research currently showcasing new coatings is performed primarily in vitro and in vivo. More clinical trials need to be performed to highlight long-term sustainability, the structural integrity, and the safety of the implant.</p>","PeriodicalId":16125,"journal":{"name":"Journal of long-term effects of medical implants","volume":"33 2","pages":"51-66"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of long-term effects of medical implants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/JLongTermEffMedImplants.2022040062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 1

Abstract

Orthopedic implants are crucial interventions that are gaining greater importance in modern medicine to restore function to commonly affected joints. Each implantation carries the risk of implant-associated infection and loosening of the implant due to improper integration with soft tissue. Coating strategies have been developed to aid the growth of bone into the implant (osteointegration) and prevent biofilm formation to avoid infection. In this review, primary articles highlighting recent developments and advancements in orthopedic implant coating will be presented. Additionally, the methodology of the articles will be critiqued based on this research criteria: establishment of function on a theoretical basis, validation of coating function, and potential next steps/improvements based on results. A theoretical basis based on understanding the mechanisms at play of these various coatings allows for systems to be developed to tackle the tasks of osteointegration, subversion of infection, and avoidance of cytotoxicity. The current state of research methodology in coating design focuses too heavily on either osteointegration or the prevention of infection, thus, future development in medical implant coating needs to investigate the creation of a coating that accomplishes both tasks. Additionally, next steps and improvements to systems need to be better highlighted to move forward when problems arise within a system. Research currently showcasing new coatings is performed primarily in vitro and in vivo. More clinical trials need to be performed to highlight long-term sustainability, the structural integrity, and the safety of the implant.

目前骨科种植体涂层的研究方法及作用机制。
在现代医学中,骨科植入物是恢复常见关节功能的重要干预手段。每次植入都有植入物相关感染和植入物松动的风险,因为植入物与软组织的结合不当。涂层策略已被开发,以帮助骨生长进入种植体(骨整合)和防止生物膜的形成,以避免感染。在这篇综述中,主要介绍了骨科种植体涂层的最新发展和进展。此外,文章的方法将根据以下研究标准进行批评:在理论基础上建立功能,涂层功能的验证,以及基于结果的潜在下一步/改进。基于理解这些不同涂层的作用机制的理论基础允许系统开发来解决骨整合,破坏感染和避免细胞毒性的任务。目前涂层设计的研究方法过于侧重于骨整合或预防感染,因此,医疗植入物涂层的未来发展需要研究创造一种同时完成这两项任务的涂层。此外,需要更好地强调系统的后续步骤和改进,以便在系统中出现问题时向前推进。目前展示新涂层的研究主要是在体外和体内进行的。需要进行更多的临床试验来强调种植体的长期可持续性、结构完整性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
46
期刊介绍: MEDICAL IMPLANTS are being used in every organ of the human body. Ideally, medical implants must have biomechanical properties comparable to those of autogenous tissues without any adverse effects. In each anatomic site, studies of the long-term effects of medical implants must be undertaken to determine accurately the safety and performance of the implants. Today, implant surgery has become an interdisciplinary undertaking involving a number of skilled and gifted specialists. For example, successful cochlear implants will involve audiologists, audiological physicians, speech and language therapists, otolaryngologists, nurses, neuro-otologists, teachers of the deaf, hearing therapists, cochlear implant manufacturers, and others involved with hearing-impaired and deaf individuals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信