3D-printed polyurethane immunoisolation bags with controlled pore architecture for macroencapsulation of islet clusters encapsulated in alginate gel.

IF 4.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Treesa Joy, Lynda Velutheril Thomas
{"title":"3D-printed polyurethane immunoisolation bags with controlled pore architecture for macroencapsulation of islet clusters encapsulated in alginate gel.","authors":"Treesa Joy,&nbsp;Lynda Velutheril Thomas","doi":"10.1007/s40204-022-00208-4","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus is a fast-growing chronic metabolic condition caused by insulin deficiency or resistance, leading to lifelong insulin use. It has become one of the world's most difficult non-communicable diseases. The goal of this study was to view the effectiveness of the combined method of macro- and microencapsulation for islet transplantation. The process of 3D printing is used to make macroencapsulation bags with regulated diffusion properties thanks to the emerging small pored channels. The ink used to manufacture 3D-printed bags with controlled specifications was polyurethane solution (13% w/v). Swelling experiments revealed that there was very little swelling and that the membrane maintained its structural stability. Alginate beads (made from 5% w/v solution) were used to microencapsulate islet cell clusters. Direct contact assay was used to confirm in vitro cytocompatibility. The insulin release from the encapsulated rabbit islets was confirmed using a glucose challenge assay. When challenged with 20 mM glucose on day 7, the encapsulated islet cells released insulin at a rate of 9.72 ± 0.65 mU/L, which was identical to the RIN-5F islet cell line control, confirming the functioning of the encapsulated islets. After 21 days of culture, the islets were shown to be viable utilizing a live-dead assay. As a result, our work demonstrates that 3D printing for macroencapsulating cells, as well as microencapsulation with alginates, is a viable scale-up technology with great potential in the field of pancreatic islet transplantation.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958212/pdf/40204_2022_Article_208.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-022-00208-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes mellitus is a fast-growing chronic metabolic condition caused by insulin deficiency or resistance, leading to lifelong insulin use. It has become one of the world's most difficult non-communicable diseases. The goal of this study was to view the effectiveness of the combined method of macro- and microencapsulation for islet transplantation. The process of 3D printing is used to make macroencapsulation bags with regulated diffusion properties thanks to the emerging small pored channels. The ink used to manufacture 3D-printed bags with controlled specifications was polyurethane solution (13% w/v). Swelling experiments revealed that there was very little swelling and that the membrane maintained its structural stability. Alginate beads (made from 5% w/v solution) were used to microencapsulate islet cell clusters. Direct contact assay was used to confirm in vitro cytocompatibility. The insulin release from the encapsulated rabbit islets was confirmed using a glucose challenge assay. When challenged with 20 mM glucose on day 7, the encapsulated islet cells released insulin at a rate of 9.72 ± 0.65 mU/L, which was identical to the RIN-5F islet cell line control, confirming the functioning of the encapsulated islets. After 21 days of culture, the islets were shown to be viable utilizing a live-dead assay. As a result, our work demonstrates that 3D printing for macroencapsulating cells, as well as microencapsulation with alginates, is a viable scale-up technology with great potential in the field of pancreatic islet transplantation.

3d打印的聚氨酯免疫隔离袋控制孔隙结构,用于海藻酸盐凝胶封装的胰岛簇的大胶囊化。
糖尿病是一种由胰岛素缺乏或抵抗引起的快速生长的慢性代谢疾病,导致终生使用胰岛素。它已成为世界上最棘手的非传染性疾病之一。本研究的目的是观察大胶囊和微胶囊联合方法在胰岛移植中的有效性。利用3D打印工艺,利用微孔通道的出现,制造出具有调节扩散特性的微胶囊袋。用于制造控制规格的3d打印袋的油墨是聚氨酯溶液(13% w/v)。膨胀实验表明,膜的膨胀很小,膜的结构保持稳定。用海藻酸盐微球(5% w/v溶液)微胶囊化胰岛细胞簇。采用直接接触法确定其体外细胞相容性。葡萄糖激发法证实了包封兔胰岛的胰岛素释放。第7天,被包裹的胰岛细胞释放胰岛素的速率为9.72±0.65 mU/L,与对照组RIN-5F相同,证实了被包裹的胰岛细胞的功能。经过21天的培养,胰岛被证明是可行的,利用活死试验。因此,我们的工作表明,3D打印的大胶囊化细胞,以及海藻酸盐微胶囊化,是一种可行的规模化技术,在胰岛移植领域具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Biomaterials
Progress in Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
9.60
自引率
4.10%
发文量
35
期刊介绍: Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信