{"title":"Delivery of bone morphogenetic protein-2 by crosslinking heparin to nile tilapia skin collagen for promotion of rat calvaria bone defect repair.","authors":"Lina Ma, Li Fu, Chengxu Gu, Haonan Wang, Zhenghai Yu, Xiuwei Gao, Dongmei Zhao, Baosheng Ge, Naili Zhang","doi":"10.1007/s40204-022-00213-7","DOIUrl":null,"url":null,"abstract":"<p><p>Collagen has been widely used as a biomaterial for tissue regeneration. At the present, aqua-collagen derived from fish is poorly explored for biomedical material applications due to its insufficient thermal stability. To improve the bone repair ability and thermal stability of fish collagen, the tilapia skin collagen was crosslinked by EDC/NHS with heparin to bind specifically to BMP-2. The thermal stability of tilapia skin collagen crosslinked with heparin (HC-COL) was detected by differential scanning calorimetry (DSC). Cytotoxicity of HC-COL was assessed by detecting MC3T3-E1 cell proliferation using CCK-8 assay. The specific binding of BMP-2 to HC-COL was tested and the bioactivity of BMP-2-loaded HC-COL (HC-COL-BMP-2) was evaluated in vitro by inducing MC3T3-E1 cell differentiation. In vivo, the bone repair ability of HC-COL-2 was evaluated using micro-CT and histological observation. After crosslinking by EDC/NHS, the heparin-linked and the thermostability of the collagen of Nile Tilapia were improved simultaneously. HC-COL has no cytotoxicity. In addition, the binding of BMP-2 to HC-COL was significantly increased. Furthermore, the in vitro study revealed the effective bioactivity of BMP-2 binding on HC-COL by inducing MC3T3-E1 cells with higher ALP activity and the formation of mineralized nodules. In vivo studies showed that more mineralized and mature bone formation was achieved in HC-COL-BMP-2 group. The prepared HC-COL was an effective BMP-2 binding carrier with enough thermal stability and could be a useful biomaterial for bone repair.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958213/pdf/40204_2022_Article_213.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-022-00213-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Collagen has been widely used as a biomaterial for tissue regeneration. At the present, aqua-collagen derived from fish is poorly explored for biomedical material applications due to its insufficient thermal stability. To improve the bone repair ability and thermal stability of fish collagen, the tilapia skin collagen was crosslinked by EDC/NHS with heparin to bind specifically to BMP-2. The thermal stability of tilapia skin collagen crosslinked with heparin (HC-COL) was detected by differential scanning calorimetry (DSC). Cytotoxicity of HC-COL was assessed by detecting MC3T3-E1 cell proliferation using CCK-8 assay. The specific binding of BMP-2 to HC-COL was tested and the bioactivity of BMP-2-loaded HC-COL (HC-COL-BMP-2) was evaluated in vitro by inducing MC3T3-E1 cell differentiation. In vivo, the bone repair ability of HC-COL-2 was evaluated using micro-CT and histological observation. After crosslinking by EDC/NHS, the heparin-linked and the thermostability of the collagen of Nile Tilapia were improved simultaneously. HC-COL has no cytotoxicity. In addition, the binding of BMP-2 to HC-COL was significantly increased. Furthermore, the in vitro study revealed the effective bioactivity of BMP-2 binding on HC-COL by inducing MC3T3-E1 cells with higher ALP activity and the formation of mineralized nodules. In vivo studies showed that more mineralized and mature bone formation was achieved in HC-COL-BMP-2 group. The prepared HC-COL was an effective BMP-2 binding carrier with enough thermal stability and could be a useful biomaterial for bone repair.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.