Hamed Mohammad Gholiha, Morteza Ehsani, Ardeshir Saeidi, Azam Ghadami
{"title":"Albumin-loaded thermo/pH dual-responsive nanogels based on sodium alginate and poly (N-vinyl caprolactam).","authors":"Hamed Mohammad Gholiha, Morteza Ehsani, Ardeshir Saeidi, Azam Ghadami","doi":"10.1007/s40204-022-00211-9","DOIUrl":null,"url":null,"abstract":"<p><p>During the past decades, many researchers have tried to encapsulate medicines in biopolymer nanogels as injectable medicines. In the present study, dual-responsive bovine serum albumin (BSA)-loaded nanogels prepared from sodium alginate grafted poly (N-vinyl caprolactam) (PNVCL) have been reported. First, PNVCL-g-sodium alginate (PNVCL-g-Alg) was synthesized through free radical polymerization, and then nanogels were obtained from ionic crosslinking of sodium alginate in the presence of BSA. FTIR spectra showed that PNVCL-g-Alg nanogels were successfully prepared. Turbidimetry and rheometry analyses demonstrated the cloud point temperature near the human body. Particle size was evaluated using FE-SEM and dynamic light scattering and it was found that the size of particles in dry and swollen state are about 30 and 280 nm, respectively. The effect of temperature and pH on BSA release was evaluated. By comparing the drug release behavior, we found that the release of the protein at the temperature above the cloud point is faster than that at the temperature below the cloud point. The pH sensitivity of BSA-loaded PNVCL-g-Alg was evaluated at pH 5.5 and 7.4 and showed that the drug release was faster at acidic pH than at neutral pH.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"12 1","pages":"41-49"},"PeriodicalIF":4.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958215/pdf/40204_2022_Article_211.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-022-00211-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
During the past decades, many researchers have tried to encapsulate medicines in biopolymer nanogels as injectable medicines. In the present study, dual-responsive bovine serum albumin (BSA)-loaded nanogels prepared from sodium alginate grafted poly (N-vinyl caprolactam) (PNVCL) have been reported. First, PNVCL-g-sodium alginate (PNVCL-g-Alg) was synthesized through free radical polymerization, and then nanogels were obtained from ionic crosslinking of sodium alginate in the presence of BSA. FTIR spectra showed that PNVCL-g-Alg nanogels were successfully prepared. Turbidimetry and rheometry analyses demonstrated the cloud point temperature near the human body. Particle size was evaluated using FE-SEM and dynamic light scattering and it was found that the size of particles in dry and swollen state are about 30 and 280 nm, respectively. The effect of temperature and pH on BSA release was evaluated. By comparing the drug release behavior, we found that the release of the protein at the temperature above the cloud point is faster than that at the temperature below the cloud point. The pH sensitivity of BSA-loaded PNVCL-g-Alg was evaluated at pH 5.5 and 7.4 and showed that the drug release was faster at acidic pH than at neutral pH.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.