Forecasting Treatment Response with Deep Pharmacokinetic Encoders.

ArXiv Pub Date : 2024-11-02
Willa Potosnak, Cristian Challu, Kin Gutierrez Olivares, Keith Dufendach, Artur Dubrawski
{"title":"Forecasting Treatment Response with Deep Pharmacokinetic Encoders.","authors":"Willa Potosnak, Cristian Challu, Kin Gutierrez Olivares, Keith Dufendach, Artur Dubrawski","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Forecasting healthcare time series data is vital for early detection of adverse outcomes and patient monitoring. However, forecasting is challenging in practice due to variable medication administration and unique pharmacokinetic (PK) properties for each patient. To address these challenges, we propose a novel hybrid global-local architecture and a PK encoder that informs deep learning models of patient-specific treatment effects. We showcase the efficacy of our approach in achieving significant accuracy gains for a blood glucose forecasting task using both realistically simulated and real-world data. Our hybrid global-local architecture improves over patient-specific models by 15.8% on average. Additionally, our PK encoder surpasses baselines by up to 16.4% on simulated data and 4.9% on real-world data for individual patients during critical events of severely high and low glucose levels.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635292/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Forecasting healthcare time series data is vital for early detection of adverse outcomes and patient monitoring. However, forecasting is challenging in practice due to variable medication administration and unique pharmacokinetic (PK) properties for each patient. To address these challenges, we propose a novel hybrid global-local architecture and a PK encoder that informs deep learning models of patient-specific treatment effects. We showcase the efficacy of our approach in achieving significant accuracy gains for a blood glucose forecasting task using both realistically simulated and real-world data. Our hybrid global-local architecture improves over patient-specific models by 15.8% on average. Additionally, our PK encoder surpasses baselines by up to 16.4% on simulated data and 4.9% on real-world data for individual patients during critical events of severely high and low glucose levels.

用全局深度学习和患者特异性药代动力学先验预测治疗反应。
预测医疗保健时间序列对于早期发现不良后果和患者监测至关重要。然而,由于嘈杂和间歇性的数据,预测在实践中可能很困难。由于外部因素(如药物管理)引起的变化点,这些挑战往往会加剧。为了应对这些挑战,我们提出了一种新的混合全局-局部架构和药代动力学编码器,该编码器可以为患者特异性治疗效果的深度学习模型提供信息。我们展示了我们的方法在使用现实模拟和现实世界数据的血糖预测任务中实现显着准确性增益的有效性。我们的全球-本地架构比患者特定模型提高了9.2-14.6%。此外,我们的药代动力学编码器在模拟数据上比其他编码技术提高了4.4%,在真实数据上提高了2.1%。所提出的方法在临床实践中可以有多种有益的应用,例如发布关于意外治疗反应的早期警告,或者根据药物吸收和消除特性帮助描述患者特异性治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信