The Antipsychotic Drug Penfluridol Inhibits N-Linked Glycoprotein Processing and Enhances T-cell-Mediated Tumor Immunity.

IF 5.3 2区 医学 Q1 ONCOLOGY
Wenlong Xu, Yuqi Wang, Na Zhang, Xiaofeng Lin, Di Zhu, Cheng Shen, Xiaobo Wang, Haiyang Li, Jinjiang Xue, Qian Yu, Xinyi Lu, Lu Zhou, Qingli He, Zhijun Tang, Shaodan He, Jianjun Fan, Jianbo Pan, Jiangjiang Tang, Wei Jiang, Mingliang Ye, Fanghui Lu, Zengxia Li, Yongjun Dang
{"title":"The Antipsychotic Drug Penfluridol Inhibits N-Linked Glycoprotein Processing and Enhances T-cell-Mediated Tumor Immunity.","authors":"Wenlong Xu, Yuqi Wang, Na Zhang, Xiaofeng Lin, Di Zhu, Cheng Shen, Xiaobo Wang, Haiyang Li, Jinjiang Xue, Qian Yu, Xinyi Lu, Lu Zhou, Qingli He, Zhijun Tang, Shaodan He, Jianjun Fan, Jianbo Pan, Jiangjiang Tang, Wei Jiang, Mingliang Ye, Fanghui Lu, Zengxia Li, Yongjun Dang","doi":"10.1158/1535-7163.MCT-23-0449","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant N-linked glycosylation is a prominent feature of cancers. Perturbance of oligosaccharide structure on cell surfaces directly affects key processes in tumor development and progression. In spite of the critical role played by N-linked glycans in tumor biology, the discovery of small molecules that specifically disturbs the N-linked glycans is still under investigation. To identify more saccharide-structure-perturbing compounds, a repurposed drug screen by using a library consisting of 1530 FDA-approved drugs was performed. Interestingly, an antipsychotic drug, penfluridol, was identified as being able to decrease cell surface wheat germ agglutinin staining. In the presence of penfluridol, cell membrane glycoproteins programmed death-ligand 1 (PD-L1) shifted to a lower molecular weight. Further studies demonstrated that penfluridol treatment caused an accumulation of high-mannose oligosaccharides, especially Man5-7GlcNAc2 glycan structures. Mechanistically, this effect is due to direct targeting of MAN1A1 mannosidase, a Golgi enzyme involved in N-glycan maturation. Moreover, we found that altered glycosylation of PD-L1 caused by penfluridol disrupted interactions between programmed cell death protein 1 and PD-L1, resulting in activation of T-cell tumor immunity. In a mouse xenograft and glioma model, penfluridol enhanced the antitumor effect of the anti-PD-L1 antibody in vivo. Overall, these findings revealed an important biological activity of the antipsychotic drug penfluridol as an inhibitor of glycan processing and proposed a repurposed use of penfluridol in antitumor therapy through activation of T-cell immunity.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"648-661"},"PeriodicalIF":5.3000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-23-0449","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aberrant N-linked glycosylation is a prominent feature of cancers. Perturbance of oligosaccharide structure on cell surfaces directly affects key processes in tumor development and progression. In spite of the critical role played by N-linked glycans in tumor biology, the discovery of small molecules that specifically disturbs the N-linked glycans is still under investigation. To identify more saccharide-structure-perturbing compounds, a repurposed drug screen by using a library consisting of 1530 FDA-approved drugs was performed. Interestingly, an antipsychotic drug, penfluridol, was identified as being able to decrease cell surface wheat germ agglutinin staining. In the presence of penfluridol, cell membrane glycoproteins programmed death-ligand 1 (PD-L1) shifted to a lower molecular weight. Further studies demonstrated that penfluridol treatment caused an accumulation of high-mannose oligosaccharides, especially Man5-7GlcNAc2 glycan structures. Mechanistically, this effect is due to direct targeting of MAN1A1 mannosidase, a Golgi enzyme involved in N-glycan maturation. Moreover, we found that altered glycosylation of PD-L1 caused by penfluridol disrupted interactions between programmed cell death protein 1 and PD-L1, resulting in activation of T-cell tumor immunity. In a mouse xenograft and glioma model, penfluridol enhanced the antitumor effect of the anti-PD-L1 antibody in vivo. Overall, these findings revealed an important biological activity of the antipsychotic drug penfluridol as an inhibitor of glycan processing and proposed a repurposed use of penfluridol in antitumor therapy through activation of T-cell immunity.

抗精神病药物penfluridol抑制N-linked糖蛋白加工并增强t细胞介导的肿瘤免疫。
异常的n -链糖基化是癌症的一个显著特征。细胞表面寡糖结构的扰动直接影响肿瘤发生发展的关键过程。尽管n -链聚糖在肿瘤生物学中起着至关重要的作用,但特异性干扰n -链聚糖的小分子的发现仍在研究中。为了鉴定更多的糖结构干扰化合物,使用由1530种fda批准的药物组成的文库进行了重新用途的药物筛选。有趣的是,一种抗精神病药物,戊氟利多,被确定为能够降低细胞表面小麦胚芽凝集素(WGA)染色。在戊氟醇存在的情况下,细胞膜糖蛋白PD-L1转移到较低的分子量。进一步的研究表明,戊氟醇处理导致高甘露糖低聚糖的积累,特别是Man5-7GlcNAc2聚糖结构。从机制上讲,这种作用是由于直接靶向MAN1A1甘露糖苷酶,一种参与n -聚糖成熟的高尔基酶。此外,我们发现戊氟醇引起的PD-L1糖基化改变破坏了PD-1和PD-L1之间的相互作用,导致t细胞肿瘤免疫的激活。在小鼠异种移植物和胶质瘤模型中,戊氟利多增强了体内抗pd - l1抗体的抗肿瘤作用。总的来说,这些发现揭示了抗精神病药物戊氟利多作为多糖加工抑制剂的重要生物活性,并提出了戊氟利多通过激活t细胞免疫来抗肿瘤治疗的重新用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信