Cyclosporin A Promotes Invasion and Migration of Extravillous Trophoblast Cells Derived from Human-Induced Pluripotent Stem Cells and Human Embryonic Stem Cells.
{"title":"Cyclosporin A Promotes Invasion and Migration of Extravillous Trophoblast Cells Derived from Human-Induced Pluripotent Stem Cells and Human Embryonic Stem Cells.","authors":"Jiaxing Wang, Ping Long, Shengnan Tian, Weihua Zu, Jing Liu, Bangyong Wu, Jilong Mao, Dan Li, Yanlin Ma, Yuanhua Huang","doi":"10.1089/scd.2022.0144","DOIUrl":null,"url":null,"abstract":"<p><p>Extravillous trophoblast (EVT) cells play an essential role in the maternal-fetal interaction. Although abnormal development and function of EVT cells, including impaired migration and invasion capability, are believed to be etiologically linked to severe pregnancy disorders including pre-eclampsia, the associated molecular mechanisms are not clear due to the lack of an appropriate cell model in vitro. Cyclosporin A (CsA) is a macrolide immunosuppressant and also used in clinic to improve pregnancy outcomes. However, whether CsA has any effects on the function of EVT cells has not been well investigated. In this study, we induced differentiation of human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) into EVT cells (hiPSC-EVT and hESC-EVT cells, respectively) by Y27632, neuregulin-1 (NRG1), A83-01, and matrigel, and collected these derived EVT cells by flow cytometry for sorting cells positive for double human leukocyte antigen-G (HLA-G) and Cytokeratin7 (KRT7), both of which are EVT markers. We then investigated the effects of CsA on the invasion and migration of these derived EVT cells. We found that the hiPSC-EVT and hESC-EVT cells expressed high levels of the EVT markers such as KRT7, integrin alpha 5 (ITGA5), and HLA-G but low levels of OCT4, a stem cell marker, and that CsA significantly promoted the invasion and migration of hiPSC-EVT and hESC-EVT cells compared with HTR-8/SVneo cells. These results represent a possible cell model for studying the function of EVT cells and mechanism of pregnancy-related disorders associated with EVT. In addition, CsA may be used to treat pregnancy complications in clinic associated with deficient EVT function.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"32 3-4","pages":"60-74"},"PeriodicalIF":2.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2022.0144","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Extravillous trophoblast (EVT) cells play an essential role in the maternal-fetal interaction. Although abnormal development and function of EVT cells, including impaired migration and invasion capability, are believed to be etiologically linked to severe pregnancy disorders including pre-eclampsia, the associated molecular mechanisms are not clear due to the lack of an appropriate cell model in vitro. Cyclosporin A (CsA) is a macrolide immunosuppressant and also used in clinic to improve pregnancy outcomes. However, whether CsA has any effects on the function of EVT cells has not been well investigated. In this study, we induced differentiation of human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) into EVT cells (hiPSC-EVT and hESC-EVT cells, respectively) by Y27632, neuregulin-1 (NRG1), A83-01, and matrigel, and collected these derived EVT cells by flow cytometry for sorting cells positive for double human leukocyte antigen-G (HLA-G) and Cytokeratin7 (KRT7), both of which are EVT markers. We then investigated the effects of CsA on the invasion and migration of these derived EVT cells. We found that the hiPSC-EVT and hESC-EVT cells expressed high levels of the EVT markers such as KRT7, integrin alpha 5 (ITGA5), and HLA-G but low levels of OCT4, a stem cell marker, and that CsA significantly promoted the invasion and migration of hiPSC-EVT and hESC-EVT cells compared with HTR-8/SVneo cells. These results represent a possible cell model for studying the function of EVT cells and mechanism of pregnancy-related disorders associated with EVT. In addition, CsA may be used to treat pregnancy complications in clinic associated with deficient EVT function.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development