Mark W DiFrancesco, Maryam Alsameen, Marie-Pierre St-Onge, Kara M Duraccio, Dean W Beebe
{"title":"Altered neuronal response to visual food stimuli in adolescents undergoing chronic sleep restriction.","authors":"Mark W DiFrancesco, Maryam Alsameen, Marie-Pierre St-Onge, Kara M Duraccio, Dean W Beebe","doi":"10.1093/sleep/zsad036","DOIUrl":null,"url":null,"abstract":"<p><strong>Study objectives: </strong>Poor sleep in adolescents can increase the risk of obesity, possibly due to changes in dietary patterns. Prior neuroimaging evidence, mostly in adults, suggests that lacking sleep results in increased response to food cues in reward-processing brain regions. Needed is a clarification of the mechanisms by which food reward processing is altered by the kind of chronic sleep restriction (SR) typically experienced by adolescents. This study aimed to elucidate the impact of sleep duration on response to visual food stimuli in healthy adolescents using functional neuroimaging, hypothesizing increased reward processing response after SR compared to a well-rested condition.</p><p><strong>Methods: </strong>Thirty-nine healthy adolescents, 14-17 years old, completed a 3-week protocol: (1) sleep phase stabilization; (2) SR (~6.5 h nightly); and (3) healthy sleep (HS) duration (~9 h nightly). Participants underwent functional MRI while performing a visual food paradigm. Contrasts of food versus nonfood responses were compared within-subject between conditions of SR and HS.</p><p><strong>Results: </strong>Under SR, there was a greater response to food stimuli compared to HS in a voxel cluster including the left ventral tegmental area and substantia nigra. No change in food appeal rating due to the sleep manipulation was detected.</p><p><strong>Conclusions: </strong>Outcomes of this study suggest that SR, as commonly experienced by healthy adolescents, results in the elevated dopaminergic drive of the reward network that may augment motivation to seek food in the context of individual food appeal and inhibitory profiles. Countermeasures that reduce food salience could include promoting consistent HS habits.</p>","PeriodicalId":49514,"journal":{"name":"Sleep","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009031/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsad036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Study objectives: Poor sleep in adolescents can increase the risk of obesity, possibly due to changes in dietary patterns. Prior neuroimaging evidence, mostly in adults, suggests that lacking sleep results in increased response to food cues in reward-processing brain regions. Needed is a clarification of the mechanisms by which food reward processing is altered by the kind of chronic sleep restriction (SR) typically experienced by adolescents. This study aimed to elucidate the impact of sleep duration on response to visual food stimuli in healthy adolescents using functional neuroimaging, hypothesizing increased reward processing response after SR compared to a well-rested condition.
Methods: Thirty-nine healthy adolescents, 14-17 years old, completed a 3-week protocol: (1) sleep phase stabilization; (2) SR (~6.5 h nightly); and (3) healthy sleep (HS) duration (~9 h nightly). Participants underwent functional MRI while performing a visual food paradigm. Contrasts of food versus nonfood responses were compared within-subject between conditions of SR and HS.
Results: Under SR, there was a greater response to food stimuli compared to HS in a voxel cluster including the left ventral tegmental area and substantia nigra. No change in food appeal rating due to the sleep manipulation was detected.
Conclusions: Outcomes of this study suggest that SR, as commonly experienced by healthy adolescents, results in the elevated dopaminergic drive of the reward network that may augment motivation to seek food in the context of individual food appeal and inhibitory profiles. Countermeasures that reduce food salience could include promoting consistent HS habits.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.