Joint Microbial and Metabolomic Network Estimation with the Censored Gaussian Graphical Model.

Pub Date : 2021-07-01 DOI:10.1007/s12561-020-09294-z
Jing Ma
{"title":"Joint Microbial and Metabolomic Network Estimation with the Censored Gaussian Graphical Model.","authors":"Jing Ma","doi":"10.1007/s12561-020-09294-z","DOIUrl":null,"url":null,"abstract":"<p><p>Joint analysis of microbiome and metabolomic data represents an imperative objective as the field moves beyond basic microbiome association studies and turns towards mechanistic and translational investigations. We present a censored Gaussian graphical model framework, where the metabolomic data are treated as continuous and the microbiome data as censored at zero, to identify direct interactions (defined as conditional dependence relationships) between microbial species and metabolites. Simulated examples show that our method metaMint performs favorably compared to the existing ones. metaMint also provides interpretable microbe-metabolite interactions when applied to a bacterial vaginosis data set. R implementation of metaMint is available on GitHub.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12561-020-09294-z","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-020-09294-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Joint analysis of microbiome and metabolomic data represents an imperative objective as the field moves beyond basic microbiome association studies and turns towards mechanistic and translational investigations. We present a censored Gaussian graphical model framework, where the metabolomic data are treated as continuous and the microbiome data as censored at zero, to identify direct interactions (defined as conditional dependence relationships) between microbial species and metabolites. Simulated examples show that our method metaMint performs favorably compared to the existing ones. metaMint also provides interpretable microbe-metabolite interactions when applied to a bacterial vaginosis data set. R implementation of metaMint is available on GitHub.

Abstract Image

Abstract Image

Abstract Image

分享
查看原文
用删节高斯图模型估计微生物和代谢组学联合网络。
微生物组和代谢组数据的联合分析代表了一个迫切的目标,因为该领域超越了基本的微生物组关联研究,转向了机制和转化研究。我们提出了一个截除高斯图形模型框架,其中代谢组数据被视为连续的,微生物组数据被截除为零,以确定微生物物种和代谢物之间的直接相互作用(定义为条件依赖关系)。仿真示例表明,与现有方法相比,我们的方法metaMint具有更好的性能。当应用于细菌性阴道病数据集时,metaMint还提供了可解释的微生物-代谢物相互作用。在GitHub上可以找到metaMint的R实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信