An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry.

Exposome Pub Date : 2022-08-25 eCollection Date: 2022-01-01 DOI:10.1093/exposome/osac007
Jeremy P Koelmel, Hongyu Xie, Elliott J Price, Elizabeth Z Lin, Katherine E Manz, Paul Stelben, Matthew K Paige, Stefano Papazian, Joseph Okeme, Dean P Jones, Dinesh Barupal, John A Bowden, Pawel Rostkowski, Kurt D Pennell, Vladimir Nikiforov, Thanh Wang, Xin Hu, Yunjia Lai, Gary W Miller, Douglas I Walker, Jonathan W Martin, Krystal J Godri Pollitt
{"title":"An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry.","authors":"Jeremy P Koelmel, Hongyu Xie, Elliott J Price, Elizabeth Z Lin, Katherine E Manz, Paul Stelben, Matthew K Paige, Stefano Papazian, Joseph Okeme, Dean P Jones, Dinesh Barupal, John A Bowden, Pawel Rostkowski, Kurt D Pennell, Vladimir Nikiforov, Thanh Wang, Xin Hu, Yunjia Lai, Gary W Miller, Douglas I Walker, Jonathan W Martin, Krystal J Godri Pollitt","doi":"10.1093/exposome/osac007","DOIUrl":null,"url":null,"abstract":"<p><p>Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome, proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations, researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposomics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecular ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communicate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS.</p>","PeriodicalId":73005,"journal":{"name":"Exposome","volume":"2 1","pages":"osac007"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exposome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/exposome/osac007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome, proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations, researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposomics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecular ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communicate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS.

Abstract Image

Abstract Image

Abstract Image

用于气相色谱-高分辨质谱分析的可操作注释评分框架。
基于 Omics 的技术能够全面描述我们暴露于环境化学品(化学暴露组)的情况,并在分子水平(如代谢组、脂质组、蛋白质组和基因组)评估相应的生物反应。通过系统测量个人接触的化学物质,并将这些刺激与生物扰动联系起来,研究人员可以确定所关注的特定化学物质接触情况,确定毒性机制和生物标志物,并设计干预措施以减少接触。然而,代谢组学和暴露组学方法的进一步发展受到了限制,因为缺乏标准化和方法来对化学物质注释进行置信度赋值。虽然气相色谱-高分辨质谱法(GC-HRMS)产生了大量的化学数据,但将 GC-HRMS 数据纳入注释框架并就这些赋值的可信度进行交流仍具有挑战性。必须能够跨平台比较暴露组学研究的化学数据,才能在已有知识的基础上推动技术的发展。在此,我们将讨论常见 GC-HRMS 工作流程提供的主要证据,包括保留时间和保留指数、电子电离、正化学电离、电子捕获负离子电离和常压化学电离光谱匹配、分子离子、准确质量、同位素模式、数据库出现率和空白出现率。然后,我们提供了一个定性框架,通过调整为液相色谱 HRMS(LC-HRMS)报告置信度而开发的 Schymanski 评分模式,将这些不同的证据纳入 GC-HRMS 数据的置信度交流中。使用血浆中添加的标准物质以及室外和室内空气样本中的可信注释对我们的框架进行了验证,结果表明,被指定为 2 级(结构相似的异构体不被视为假阳性)的化学鉴定的可疑筛选假阳性率为 12%。该框架很容易适应各种工作流程,并提供了一种简洁的方法来表达对注释的信心。对该框架的进一步验证、完善和采用将在理想的情况下促成整个领域的统一,从而帮助提高在 GC-HRMS 中获得的化合物注释的质量和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信