Ana Cláudia Leite , Telma Silva Martins , Ana Campos , Vítor Costa , Clara Pereira
{"title":"Phosphoregulation of the ATP synthase beta subunit stimulates mitochondrial activity for G2/M progression","authors":"Ana Cláudia Leite , Telma Silva Martins , Ana Campos , Vítor Costa , Clara Pereira","doi":"10.1016/j.jbior.2022.100905","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Mitochondrial ATP synthase is a multifunctional </span>enzyme complex involved in ATP production. We previously reported that the ATP synthase catalytic </span>beta subunit (Atp2p in yeast) is regulated by the 2A-like </span>protein phosphatase<span> Sit4p, which targets Atp2p at T124/T317 impacting on ATP synthase levels and mitochondrial respiration.</span></p><p><span>Here we report that Atp2-T124/T317 is also potentially regulated by Cdc5p, a polo-like mitotic kinase. Since both Cdc5p and Sit4p have established roles in cell cycle regulation<span><span>, we investigated whether Atp2-T124/T317 phosphorylation was cell cycle-related. We present evidence that Atp2p levels and phosphorylation vary during cell cycle progression, with an increase at G2/M phase. Atp2-T124/T317 phosphorylation stimulates </span>mitochondrial membrane potential<span>, respiration and ATP levels at G2/M phase, indicating that dynamic Atp2p phosphorylation contributes to mitochondrial activity at this specific cell cycle phase. Preventing Atp2p phosphorylation delays G2/M to G1 transition, suggesting that enhanced </span></span></span>bioenergetics<span> at G2/M may help meet the energetic demands of cell cycle progression. However, mimicking constitutive T124/T317 phosphorylation or overexpressing Atp2p leads to mitochondrial DNA instability, indicating that reversible Atp2p phosphorylation is critical for homeostasis.</span></p><p>These results indicate that transient phosphorylation of Atp2p, a protein at the core of the ATP production machinery, impacts on mitochondrial bioenergetics and supports cell cycle progression at G2/M.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"85 ","pages":"Article 100905"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biological regulation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212492622000458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2
Abstract
Mitochondrial ATP synthase is a multifunctional enzyme complex involved in ATP production. We previously reported that the ATP synthase catalytic beta subunit (Atp2p in yeast) is regulated by the 2A-like protein phosphatase Sit4p, which targets Atp2p at T124/T317 impacting on ATP synthase levels and mitochondrial respiration.
Here we report that Atp2-T124/T317 is also potentially regulated by Cdc5p, a polo-like mitotic kinase. Since both Cdc5p and Sit4p have established roles in cell cycle regulation, we investigated whether Atp2-T124/T317 phosphorylation was cell cycle-related. We present evidence that Atp2p levels and phosphorylation vary during cell cycle progression, with an increase at G2/M phase. Atp2-T124/T317 phosphorylation stimulates mitochondrial membrane potential, respiration and ATP levels at G2/M phase, indicating that dynamic Atp2p phosphorylation contributes to mitochondrial activity at this specific cell cycle phase. Preventing Atp2p phosphorylation delays G2/M to G1 transition, suggesting that enhanced bioenergetics at G2/M may help meet the energetic demands of cell cycle progression. However, mimicking constitutive T124/T317 phosphorylation or overexpressing Atp2p leads to mitochondrial DNA instability, indicating that reversible Atp2p phosphorylation is critical for homeostasis.
These results indicate that transient phosphorylation of Atp2p, a protein at the core of the ATP production machinery, impacts on mitochondrial bioenergetics and supports cell cycle progression at G2/M.