Carlo Maj, Christian Staerk, Oleg Borisov, Hannah Klinkhammer, Ming Wai Yeung, Peter Krawitz, Andreas Mayr
{"title":"Statistical learning for sparser fine-mapped polygenic models: The prediction of LDL-cholesterol","authors":"Carlo Maj, Christian Staerk, Oleg Borisov, Hannah Klinkhammer, Ming Wai Yeung, Peter Krawitz, Andreas Mayr","doi":"10.1002/gepi.22495","DOIUrl":null,"url":null,"abstract":"<p>Polygenic risk scores quantify the individual genetic predisposition regarding a particular trait. We propose and illustrate the application of existing statistical learning methods to derive sparser models for genome-wide data with a polygenic signal. Our approach is based on three consecutive steps. First, potentially informative loci are identified by a marginal screening approach. Then, fine-mapping is independently applied for blocks of variants in linkage disequilibrium, where informative variants are retrieved by using variable selection methods including boosting with probing and stochastic searches with the Adaptive Subspace method. Finally, joint prediction models with the selected variants are derived using statistical boosting. In contrast to alternative approaches relying on univariate summary statistics from genome-wide association studies, our three-step approach enables to select and fit multivariable regression models on large-scale genotype data. Based on UK Biobank data, we develop prediction models for LDL-cholesterol as a continuous trait. Additionally, we consider a recent scalable algorithm for the Lasso. Results show that statistical learning approaches based on fine-mapping of genetic signals result in a competitive prediction performance compared to classical polygenic risk approaches, while yielding sparser risk models.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"46 8","pages":"589-603"},"PeriodicalIF":1.7000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22495","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22495","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 4
Abstract
Polygenic risk scores quantify the individual genetic predisposition regarding a particular trait. We propose and illustrate the application of existing statistical learning methods to derive sparser models for genome-wide data with a polygenic signal. Our approach is based on three consecutive steps. First, potentially informative loci are identified by a marginal screening approach. Then, fine-mapping is independently applied for blocks of variants in linkage disequilibrium, where informative variants are retrieved by using variable selection methods including boosting with probing and stochastic searches with the Adaptive Subspace method. Finally, joint prediction models with the selected variants are derived using statistical boosting. In contrast to alternative approaches relying on univariate summary statistics from genome-wide association studies, our three-step approach enables to select and fit multivariable regression models on large-scale genotype data. Based on UK Biobank data, we develop prediction models for LDL-cholesterol as a continuous trait. Additionally, we consider a recent scalable algorithm for the Lasso. Results show that statistical learning approaches based on fine-mapping of genetic signals result in a competitive prediction performance compared to classical polygenic risk approaches, while yielding sparser risk models.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.