Adaptive Bayesian variable clustering via structural learning of breast cancer data

IF 1.7 4区 医学 Q3 GENETICS & HEREDITY
Riddhi Pratim Ghosh, Arnab K. Maity, Mohsen Pourahmadi, Bani K. Mallick
{"title":"Adaptive Bayesian variable clustering via structural learning of breast cancer data","authors":"Riddhi Pratim Ghosh,&nbsp;Arnab K. Maity,&nbsp;Mohsen Pourahmadi,&nbsp;Bani K. Mallick","doi":"10.1002/gepi.22507","DOIUrl":null,"url":null,"abstract":"<p>The clustering of proteins is of interest in cancer cell biology. This article proposes a hierarchical Bayesian model for protein (variable) clustering hinging on correlation structure. Starting from a multivariate normal likelihood, we enforce the clustering through prior modeling using angle-based unconstrained reparameterization of correlations and assume a truncated Poisson distribution (to penalize a large number of clusters) as prior on the number of clusters. The posterior distributions of the parameters are not in explicit form and we use a reversible jump Markov chain Monte Carlo based technique is used to simulate the parameters from the posteriors. The end products of the proposed method are estimated cluster configuration of the proteins (variables) along with the number of clusters. The Bayesian method is flexible enough to cluster the proteins as well as estimate the number of clusters. The performance of the proposed method has been substantiated with extensive simulation studies and one protein expression data with a hereditary disposition in breast cancer where the proteins are coming from different pathways.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 1","pages":"95-104"},"PeriodicalIF":1.7000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22507","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The clustering of proteins is of interest in cancer cell biology. This article proposes a hierarchical Bayesian model for protein (variable) clustering hinging on correlation structure. Starting from a multivariate normal likelihood, we enforce the clustering through prior modeling using angle-based unconstrained reparameterization of correlations and assume a truncated Poisson distribution (to penalize a large number of clusters) as prior on the number of clusters. The posterior distributions of the parameters are not in explicit form and we use a reversible jump Markov chain Monte Carlo based technique is used to simulate the parameters from the posteriors. The end products of the proposed method are estimated cluster configuration of the proteins (variables) along with the number of clusters. The Bayesian method is flexible enough to cluster the proteins as well as estimate the number of clusters. The performance of the proposed method has been substantiated with extensive simulation studies and one protein expression data with a hereditary disposition in breast cancer where the proteins are coming from different pathways.

基于乳腺癌数据结构学习的自适应贝叶斯变量聚类
蛋白质的聚类在癌细胞生物学中引起了人们的兴趣。本文提出了一种基于相关结构的蛋白质(变量)聚类的层次贝叶斯模型。从多元正态似然开始,我们通过使用基于角度的无约束相关性重新参数化的先验建模来强制聚类,并假设截断泊松分布(惩罚大量聚类)作为聚类数量的先验。参数的后验分布不是显式的,我们使用可逆跳跃马尔可夫链蒙特卡罗技术从后验模拟参数。该方法的最终产物是蛋白质(变量)的估计簇配置以及簇的数量。贝叶斯方法足够灵活,可以对蛋白质进行聚类,也可以估计聚类的数量。所提出的方法的性能已经证实了广泛的模拟研究和一个蛋白质表达数据与乳腺癌的遗传倾向,其中蛋白质来自不同的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetic Epidemiology
Genetic Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.40
自引率
9.50%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations. Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信