Infinite-Dimensional Adaptive Boundary Observer for Inner-Domain Temperature Estimation of 3D Electrosurgical Processes using Surface Thermography Sensing.

Hamza El-Kebir, Junren Ran, Martin Ostoja-Starzewski, Richard Berlin, Joseph Bentsman, Leonardo P Chamorro
{"title":"Infinite-Dimensional Adaptive Boundary Observer for Inner-Domain Temperature Estimation of 3D Electrosurgical Processes using Surface Thermography Sensing.","authors":"Hamza El-Kebir, Junren Ran, Martin Ostoja-Starzewski, Richard Berlin, Joseph Bentsman, Leonardo P Chamorro","doi":"10.1109/cdc51059.2022.9992642","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel 3D adaptive observer framework for use in the determination of subsurface organic tissue temperatures in electrosurgery. The observer structure leverages pointwise 2D surface temperature readings obtained from a real-time infrared thermographer for both parameter estimation and temperature field observation. We introduce a novel approach to decoupled parameter adaptation and estimation, wherein the parameter estimation can run in real-time, while the observer loop runs on a slower time scale. To achieve this, we introduce a novel parameter estimation method known as attention-based noise-robust averaging, in which surface thermography time series are used to directly estimate the tissue's diffusivity. Our observer contains a real-time parameter adaptation component based on this diffusivity adaptation law, as well as a Luenberger-type corrector based on the sensed surface temperature. In this work, we also present a novel model structure adapted to the setting of robotic surgery, wherein we model the electrosurgical heat distribution as a compactly supported magnitude- and velocity-controlled heat source involving a new nonlinear input mapping. We demonstrate satisfactory performance of the adaptive observer in simulation, using real-life experimental ex vivo porcine tissue data.</p>","PeriodicalId":74517,"journal":{"name":"Proceedings of the ... IEEE Conference on Decision & Control. IEEE Conference on Decision & Control","volume":"2022 ","pages":"5437-5442"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914484/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE Conference on Decision & Control. IEEE Conference on Decision & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cdc51059.2022.9992642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a novel 3D adaptive observer framework for use in the determination of subsurface organic tissue temperatures in electrosurgery. The observer structure leverages pointwise 2D surface temperature readings obtained from a real-time infrared thermographer for both parameter estimation and temperature field observation. We introduce a novel approach to decoupled parameter adaptation and estimation, wherein the parameter estimation can run in real-time, while the observer loop runs on a slower time scale. To achieve this, we introduce a novel parameter estimation method known as attention-based noise-robust averaging, in which surface thermography time series are used to directly estimate the tissue's diffusivity. Our observer contains a real-time parameter adaptation component based on this diffusivity adaptation law, as well as a Luenberger-type corrector based on the sensed surface temperature. In this work, we also present a novel model structure adapted to the setting of robotic surgery, wherein we model the electrosurgical heat distribution as a compactly supported magnitude- and velocity-controlled heat source involving a new nonlinear input mapping. We demonstrate satisfactory performance of the adaptive observer in simulation, using real-life experimental ex vivo porcine tissue data.

利用表面热成像传感进行三维电外科过程内域温度估算的无穷维自适应边界观测器
我们提出了一种新型三维自适应观测器框架,用于确定电外科手术中表层下有机组织的温度。该观测器结构利用从实时红外测温仪获得的点状二维表面温度读数进行参数估计和温度场观测。我们引入了一种解耦参数适应和估计的新方法,其中参数估计可以实时运行,而观测器环路则在较慢的时间尺度上运行。为了实现这一目标,我们引入了一种新颖的参数估计方法,即基于注意力的稳健噪声平均法,在这种方法中,表面热成像时间序列被用来直接估计组织的扩散率。我们的观测器包含一个基于该扩散适应法的实时参数适应组件,以及一个基于感应表面温度的卢恩贝格尔型校正器。在这项工作中,我们还提出了一种适用于机器人手术环境的新型模型结构,其中我们将电外科热分布建模为一个紧凑支持的幅度和速度控制热源,涉及一种新的非线性输入映射。我们利用真实的活体猪组织实验数据,证明了自适应观测器在模拟中令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信