Jack McDonnell, Thomas McKenna, Kathryn A Yurkonis, Deirdre Hennessy, Rafael de Andrade Moral, Caroline Brophy
{"title":"A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships.","authors":"Jack McDonnell, Thomas McKenna, Kathryn A Yurkonis, Deirdre Hennessy, Rafael de Andrade Moral, Caroline Brophy","doi":"10.1007/s13253-022-00505-2","DOIUrl":null,"url":null,"abstract":"<p><p>In grassland ecosystems, it is well known that increasing plant species diversity can improve ecosystem functions (i.e., ecosystem responses), for example, by increasing productivity and reducing weed invasion. Diversity-Interactions models use species proportions and their interactions as predictors in a regression framework to assess biodiversity and ecosystem function relationships. However, it can be difficult to model numerous interactions if there are many species, and interactions may be temporally variable or dependent on spatial planting patterns. We developed a new Diversity-Interactions mixed model for jointly assessing many species interactions and within-plot species planting pattern over multiple years. We model pairwise interactions using a small number of fixed parameters that incorporate spatial effects and supplement this by including all pairwise interaction variables as random effects, each constrained to have the same variance within each year. The random effects are indexed by pairs of species within plots rather than a plot-level factor as is typical in mixed models, and capture remaining variation due to pairwise species interactions parsimoniously. We apply our novel methodology to three years of weed invasion data from a 16-species grassland experiment that manipulated plant species diversity and spatial planting pattern and test its statistical properties in a simulation study.Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00505-2.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908731/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-022-00505-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
In grassland ecosystems, it is well known that increasing plant species diversity can improve ecosystem functions (i.e., ecosystem responses), for example, by increasing productivity and reducing weed invasion. Diversity-Interactions models use species proportions and their interactions as predictors in a regression framework to assess biodiversity and ecosystem function relationships. However, it can be difficult to model numerous interactions if there are many species, and interactions may be temporally variable or dependent on spatial planting patterns. We developed a new Diversity-Interactions mixed model for jointly assessing many species interactions and within-plot species planting pattern over multiple years. We model pairwise interactions using a small number of fixed parameters that incorporate spatial effects and supplement this by including all pairwise interaction variables as random effects, each constrained to have the same variance within each year. The random effects are indexed by pairs of species within plots rather than a plot-level factor as is typical in mixed models, and capture remaining variation due to pairwise species interactions parsimoniously. We apply our novel methodology to three years of weed invasion data from a 16-species grassland experiment that manipulated plant species diversity and spatial planting pattern and test its statistical properties in a simulation study.Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00505-2.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.