{"title":"MetaConClust - Unsupervised Binning of Metagenomics Data using Consensus Clustering.","authors":"Dipro Sinha, Anu Sharma, Dwijesh Chandra Mishra, Anil Rai, Shashi Bhushan Lal, Sanjeev Kumar, Moh Samir Farooqi, Krishna Kumar Chaturvedi","doi":"10.2174/1389202923666220413114659","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background</i>:</b> Binning of metagenomic reads is an active area of research, and many unsupervised machine learning-based techniques have been used for taxonomic independent binning of metagenomic reads. <b><i>Objective</i>:</b> It is important to find the optimum number of the cluster as well as develop an efficient pipeline for deciphering the complexity of the microbial genome. <b><i>Methods</i>:</b> Applying unsupervised clustering techniques for binning requires finding the optimal number of clusters beforehand and is observed to be a difficult task. This paper describes a novel method, MetaConClust, using coverage information for grouping of contigs and automatically finding the optimal number of clusters for binning of metagenomics data using a consensus-based clustering approach. The coverage of contigs in a metagenomics sample has been observed to be directly proportional to the abundance of species in the sample and is used for grouping of data in the first phase by MetaConClust. The Partitioning Around Medoid (PAM) method is used for clustering in the second phase for generating bins with the initial number of clusters determined automatically through a consensus-based method. <b><i>Results</i>:</b> Finally, the quality of the obtained bins is tested using silhouette index, rand Index, recall, precision, and accuracy. Performance of MetaConClust is compared with recent methods and tools using benchmarked low complexity simulated and real metagenomic datasets and is found better for unsupervised and comparable for hybrid methods. <b><i>Conclusion</i>:</b> This is suggestive of the proposition that the consensus-based clustering approach is a promising method for automatically finding the number of bins for metagenomics data.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8c/3c/CG-23-137.PMC9878838.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389202923666220413114659","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Binning of metagenomic reads is an active area of research, and many unsupervised machine learning-based techniques have been used for taxonomic independent binning of metagenomic reads. Objective: It is important to find the optimum number of the cluster as well as develop an efficient pipeline for deciphering the complexity of the microbial genome. Methods: Applying unsupervised clustering techniques for binning requires finding the optimal number of clusters beforehand and is observed to be a difficult task. This paper describes a novel method, MetaConClust, using coverage information for grouping of contigs and automatically finding the optimal number of clusters for binning of metagenomics data using a consensus-based clustering approach. The coverage of contigs in a metagenomics sample has been observed to be directly proportional to the abundance of species in the sample and is used for grouping of data in the first phase by MetaConClust. The Partitioning Around Medoid (PAM) method is used for clustering in the second phase for generating bins with the initial number of clusters determined automatically through a consensus-based method. Results: Finally, the quality of the obtained bins is tested using silhouette index, rand Index, recall, precision, and accuracy. Performance of MetaConClust is compared with recent methods and tools using benchmarked low complexity simulated and real metagenomic datasets and is found better for unsupervised and comparable for hybrid methods. Conclusion: This is suggestive of the proposition that the consensus-based clustering approach is a promising method for automatically finding the number of bins for metagenomics data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.