The Potential Role of Plastome Copy Number as a Quality Biomarker for Plant Products using Real-time Quantitative Polymerase Chain Reaction.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Amita Pandey, Shifa Chaudhary, Binu Bhat
{"title":"The Potential Role of Plastome Copy Number as a Quality Biomarker for Plant Products using Real-time Quantitative Polymerase Chain Reaction.","authors":"Amita Pandey,&nbsp;Shifa Chaudhary,&nbsp;Binu Bhat","doi":"10.2174/1389202923666220513111643","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background</i>:</b> Plastids are plant-specific semi-autonomous self-replicating organelles, containing circular DNA molecules called plastomes. Plastids perform crucial functions, including photosynthesis, stress perception and response, synthesis of metabolites, and storage. The plastome and plastid numbers have been shown to be modulated by developmental stage and environmental stimuli and have been used as a biomarker (identification of plant species) and biosensor (an indicator of abiotic and biotic stresses). However, the determination of plastome sequence and plastid number is a laborious process requiring sophisticated equipment. <b><i>Methods</i>:</b> This study proposes using plastome copy number (PCN), which can be determined rapidly by real-time quantitative polymerase chain reaction (RT-qPCR) as a plant product quality biomarker. This study shows that the PCN log<sub>10</sub> and range PCN log<sub>10</sub> values calculated from RT-qPCR data, which was obtained for two years from leaves and lint samples of cotton and seed samples of cotton, rice, soybean, maize, and sesame can be used for assessing the quality of the samples. <b><i>Results</i>:</b> Observation of lower range PCN log<sub>10</sub> values for CS (0.31) and CR (0.58) indicated that the PCN showed little variance from the mean PCN log<sub>10</sub> values for CS (3.81) and CR (3.85), suggesting that these samples might have encountered ambient environmental conditions during growth and/ or post-harvest storage and processing. This conclusion was further supported by observation of higher range PCN log<sub>10</sub> values for RS (3.09) <i>versus</i> RP (0.05), where rice seeds in the RP group had protective hull covering compared to broken hull-less seeds in the RS group. To further support that PCN is affected by external factors, rice seeds treated with high temperatures and pathogens exhibited lower PCN values when compared to untreated seeds. Furthermore, the range PCN log<sub>10</sub> values were found to be high for cotton leaf (CL) and lint (Clt) sample groups, 4.11 and 3.63, respectively, where leaf and lint samples were of different sizes, indicating that leaf samples might be of different developmental stage and lint samples might have been processed differently, supporting that the PCN is affected by both internal and external factors, respectively. Moreover, PCN log<sub>10</sub> values were found to be plant specific, with oil containing seeds such as SeS (6.49) and MS (5.05) exhibiting high PCN log<sub>10</sub> values compared to non-oil seeds such as SS (1.96). <b><i>Conclusion</i>:</b> In conclusion, it was observed that PCN log<sub>10</sub> values calculated from RT-qPCR assays were specific to plant species and the range of PCN log<sub>10</sub> values can be directly correlated to the internal and external factors and, therefore might be used as a potential biomarker for assessing the quality of plant products.</p>","PeriodicalId":10803,"journal":{"name":"Current Genomics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/51/CG-23-289.PMC9875542.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389202923666220513111643","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Plastids are plant-specific semi-autonomous self-replicating organelles, containing circular DNA molecules called plastomes. Plastids perform crucial functions, including photosynthesis, stress perception and response, synthesis of metabolites, and storage. The plastome and plastid numbers have been shown to be modulated by developmental stage and environmental stimuli and have been used as a biomarker (identification of plant species) and biosensor (an indicator of abiotic and biotic stresses). However, the determination of plastome sequence and plastid number is a laborious process requiring sophisticated equipment. Methods: This study proposes using plastome copy number (PCN), which can be determined rapidly by real-time quantitative polymerase chain reaction (RT-qPCR) as a plant product quality biomarker. This study shows that the PCN log10 and range PCN log10 values calculated from RT-qPCR data, which was obtained for two years from leaves and lint samples of cotton and seed samples of cotton, rice, soybean, maize, and sesame can be used for assessing the quality of the samples. Results: Observation of lower range PCN log10 values for CS (0.31) and CR (0.58) indicated that the PCN showed little variance from the mean PCN log10 values for CS (3.81) and CR (3.85), suggesting that these samples might have encountered ambient environmental conditions during growth and/ or post-harvest storage and processing. This conclusion was further supported by observation of higher range PCN log10 values for RS (3.09) versus RP (0.05), where rice seeds in the RP group had protective hull covering compared to broken hull-less seeds in the RS group. To further support that PCN is affected by external factors, rice seeds treated with high temperatures and pathogens exhibited lower PCN values when compared to untreated seeds. Furthermore, the range PCN log10 values were found to be high for cotton leaf (CL) and lint (Clt) sample groups, 4.11 and 3.63, respectively, where leaf and lint samples were of different sizes, indicating that leaf samples might be of different developmental stage and lint samples might have been processed differently, supporting that the PCN is affected by both internal and external factors, respectively. Moreover, PCN log10 values were found to be plant specific, with oil containing seeds such as SeS (6.49) and MS (5.05) exhibiting high PCN log10 values compared to non-oil seeds such as SS (1.96). Conclusion: In conclusion, it was observed that PCN log10 values calculated from RT-qPCR assays were specific to plant species and the range of PCN log10 values can be directly correlated to the internal and external factors and, therefore might be used as a potential biomarker for assessing the quality of plant products.

Abstract Image

Abstract Image

Abstract Image

利用实时定量聚合酶链反应,质体拷贝数作为植物产品质量生物标志物的潜在作用。
背景:质体是植物特有的半自主自我复制的细胞器,含有被称为质体的环状DNA分子。质体具有重要的功能,包括光合作用、应激感知和反应、代谢物合成和储存。质体和质体数量受发育阶段和环境刺激的调节,已被用作生物标志物(植物物种的识别)和生物传感器(非生物和生物胁迫的指标)。然而,质体序列和质体数量的测定是一个费力的过程,需要复杂的设备。方法:本研究提出利用实时定量聚合酶链反应(RT-qPCR)快速测定的质体拷贝数(PCN)作为植物产品质量的生物标志物。本研究表明,通过对棉花叶片和皮棉样品以及棉花、水稻、大豆、玉米和芝麻种子样品进行为期两年的RT-qPCR数据计算得到的PCN log10和范围PCN log10值可用于样品质量评价。结果:CS(0.31)和CR(0.58)的PCN log10值较低,表明PCN与CS(3.81)和CR(3.85)的PCN log10平均值相差不大,表明这些样品可能在生长和/或收获后的储存和加工过程中遇到了环境条件。这一结论进一步得到了观察结果的支持,RS组的PCN log10值(3.09)高于RP组(0.05),其中RP组的水稻种子与RS组的破碎无壳种子相比具有保护性外壳。为了进一步支持PCN受外部因素影响的观点,经过高温和病原体处理的水稻种子的PCN值比未经处理的种子低。此外,棉花叶片(CL)和棉绒(Clt)样品组的PCN log10值范围较高,分别为4.11和3.63,叶片和棉绒样品的大小不同,说明叶片样品可能处于不同的发育阶段,棉绒样品可能经过不同的处理,支持PCN分别受到内外因素的影响。此外,发现PCN log10值具有植物特异性,含油种子如SeS(6.49)和MS(5.05)比非油种子如SS(1.96)具有更高的PCN log10值。结论:由此可见,RT-qPCR计算的PCN log10值具有植物物种特异性,且PCN log10值的取值范围与植物的内外部因素直接相关,可作为评价植物产品质量的潜在生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Genomics
Current Genomics 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
29
审稿时长
>0 weeks
期刊介绍: Current Genomics is a peer-reviewed journal that provides essential reading about the latest and most important developments in genome science and related fields of research. Systems biology, systems modeling, machine learning, network inference, bioinformatics, computational biology, epigenetics, single cell genomics, extracellular vesicles, quantitative biology, and synthetic biology for the study of evolution, development, maintenance, aging and that of human health, human diseases, clinical genomics and precision medicine are topics of particular interest. The journal covers plant genomics. The journal will not consider articles dealing with breeding and livestock. Current Genomics publishes three types of articles including: i) Research papers from internationally-recognized experts reporting on new and original data generated at the genome scale level. Position papers dealing with new or challenging methodological approaches, whether experimental or mathematical, are greatly welcome in this section. ii) Authoritative and comprehensive full-length or mini reviews from widely recognized experts, covering the latest developments in genome science and related fields of research such as systems biology, statistics and machine learning, quantitative biology, and precision medicine. Proposals for mini-hot topics (2-3 review papers) and full hot topics (6-8 review papers) guest edited by internationally-recognized experts are welcome in this section. Hot topic proposals should not contain original data and they should contain articles originating from at least 2 different countries. iii) Opinion papers from internationally recognized experts addressing contemporary questions and issues in the field of genome science and systems biology and basic and clinical research practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信