Language Model-Guided Classifier Adaptation for Brain-Computer Interfaces for Communication.

Xinlin J Chen, Leslie M Collins, Boyla O Mainsah
{"title":"Language Model-Guided Classifier Adaptation for Brain-Computer Interfaces for Communication.","authors":"Xinlin J Chen,&nbsp;Leslie M Collins,&nbsp;Boyla O Mainsah","doi":"10.1109/smc53654.2022.9945561","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-computer interfaces (BCIs), such as the P300 speller, can provide a means of communication for individuals with severe neuromuscular limitations. BCIs interpret electroencephalography (EEG) signals in order to translate embedded information about a user's intent into executable commands to control external devices. However, EEG signals are inherently noisy and nonstationary, posing a challenge to extended BCI use. Conventionally, a BCI classifier is trained via supervised learning in an offline calibration session; once trained, the classifier is deployed for online use and is not updated. As the statistics of a user's EEG data change over time, the performance of a static classifier may decline with extended use. It is therefore desirable to automatically adapt the classifier to current data statistics without requiring offline recalibration. In an existing semi-supervised learning approach, the classifier is trained on labeled EEG data and is then updated using incoming unlabeled EEG data and classifier-predicted labels. To reduce the risk of learning from incorrect predictions, a threshold is imposed to exclude unlabeled data with low-confidence label predictions from the expanded training set when retraining the adaptive classifier. In this work, we propose the use of a language model for spelling error correction and disambiguation to provide information about label correctness during semi-supervised learning. Results from simulations with multi-session P300 speller user EEG data demonstrate that our language-guided semi-supervised approach significantly improves spelling accuracy relative to conventional BCI calibration and threshold-based semi-supervised learning.</p>","PeriodicalId":72691,"journal":{"name":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","volume":"2022 ","pages":"1642-1647"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910722/pdf/nihms-1862780.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/smc53654.2022.9945561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-computer interfaces (BCIs), such as the P300 speller, can provide a means of communication for individuals with severe neuromuscular limitations. BCIs interpret electroencephalography (EEG) signals in order to translate embedded information about a user's intent into executable commands to control external devices. However, EEG signals are inherently noisy and nonstationary, posing a challenge to extended BCI use. Conventionally, a BCI classifier is trained via supervised learning in an offline calibration session; once trained, the classifier is deployed for online use and is not updated. As the statistics of a user's EEG data change over time, the performance of a static classifier may decline with extended use. It is therefore desirable to automatically adapt the classifier to current data statistics without requiring offline recalibration. In an existing semi-supervised learning approach, the classifier is trained on labeled EEG data and is then updated using incoming unlabeled EEG data and classifier-predicted labels. To reduce the risk of learning from incorrect predictions, a threshold is imposed to exclude unlabeled data with low-confidence label predictions from the expanded training set when retraining the adaptive classifier. In this work, we propose the use of a language model for spelling error correction and disambiguation to provide information about label correctness during semi-supervised learning. Results from simulations with multi-session P300 speller user EEG data demonstrate that our language-guided semi-supervised approach significantly improves spelling accuracy relative to conventional BCI calibration and threshold-based semi-supervised learning.

基于语言模型的脑机接口分类器适配。
脑机接口(bci),如P300拼写器,可以为患有严重神经肌肉障碍的人提供一种交流手段。脑机接口解释脑电图(EEG)信号,以便将有关用户意图的嵌入式信息转换为可执行的命令来控制外部设备。然而,脑电图信号具有固有的噪声和非平稳性,这对BCI的扩展使用提出了挑战。通常,BCI分类器在离线校准过程中通过监督学习进行训练;一旦训练完成,分类器就被部署用于在线使用,不会更新。由于用户脑电图数据的统计数据随时间而变化,静态分类器的性能可能会随着使用时间的延长而下降。因此,需要自动调整分类器以适应当前的数据统计,而不需要离线重新校准。在现有的半监督学习方法中,分类器在标记的脑电数据上进行训练,然后使用输入的未标记的脑电数据和分类器预测的标签来更新分类器。为了降低从错误预测中学习的风险,在重新训练自适应分类器时,施加阈值以排除扩展训练集中具有低置信度标签预测的未标记数据。在这项工作中,我们建议使用一种语言模型来纠正拼写错误和消除歧义,以提供半监督学习期间关于标签正确性的信息。对多会话P300拼写用户脑电图数据的模拟结果表明,相对于传统的脑机接口校准和基于阈值的半监督学习,我们的语言引导半监督学习方法显著提高了拼写准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信