Min-Ho Jo, Jung-Hyun Ju, Sun-Yeon Heo, Jaehoon Cho, Ki Jun Jeong, Min-Soo Kim, Chul-Ho Kim, Baek-Rock Oh
{"title":"Production of 1,2-propanediol from glycerol in Klebsiella pneumoniae GEM167 with flux enhancement of the oxidative pathway.","authors":"Min-Ho Jo, Jung-Hyun Ju, Sun-Yeon Heo, Jaehoon Cho, Ki Jun Jeong, Min-Soo Kim, Chul-Ho Kim, Baek-Rock Oh","doi":"10.1186/s13068-023-02269-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To support the sustainability of biodiesel production, by-products, such as crude glycerol, should be converted into high-value chemical products. 1,2-propanediol (1,2-PDO) has been widely used as a building block in the chemical and pharmaceutical industries. Recently, the microbial bioconversion of lactic acid into 1,2-PDO is attracting attention to overcome limitations of previous biosynthetic pathways for production of 1,2-PDO. In this study, we examined the effect of genetic engineering, metabolic engineering, and control of bioprocess factors on the production of 1,2-PDO from lactic acid by K. pneumoniae GEM167 with flux enhancement of the oxidative pathway, using glycerol as carbon source.</p><p><strong>Results: </strong>We developed K. pneumoniae GEM167ΔadhE/pBR-1,2PDO, a novel bacterial strain that has blockage of ethanol biosynthesis and biosynthesized 1,2-PDO from lactic acid when glycerol is carbon source. Increasing the agitation speed from 200 to 400 rpm not only increased 1,2-PDO production by 2.24-fold to 731.0 ± 24.7 mg/L at 48 h but also increased the amount of a by-product, 2,3-butanediol. We attempted to inhibit 2,3-butanediol biosynthesis using the approaches of pH control and metabolic engineering. Control of pH at 7.0 successfully increased 1,2-PDO production (1016.5 ± 37.3 mg/L at 48 h), but the metabolic engineering approach was not successful. The plasmid in this strain maintained 100% stability for 72 h.</p><p><strong>Conclusions: </strong>This study is the first to report the biosynthesis of 1,2-PDO from lactic acid in K. pneumoniae when glycerol was carbon source. The 1,2-PDO production was enhanced by blocking the synthesis of 2,3-butanediol through pH control. Our results indicate that K. pneumoniae GEM167 has potential for the production of additional valuable chemical products from metabolites produced through oxidative pathways.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":"16 1","pages":"18"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903448/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13068-023-02269-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Background: To support the sustainability of biodiesel production, by-products, such as crude glycerol, should be converted into high-value chemical products. 1,2-propanediol (1,2-PDO) has been widely used as a building block in the chemical and pharmaceutical industries. Recently, the microbial bioconversion of lactic acid into 1,2-PDO is attracting attention to overcome limitations of previous biosynthetic pathways for production of 1,2-PDO. In this study, we examined the effect of genetic engineering, metabolic engineering, and control of bioprocess factors on the production of 1,2-PDO from lactic acid by K. pneumoniae GEM167 with flux enhancement of the oxidative pathway, using glycerol as carbon source.
Results: We developed K. pneumoniae GEM167ΔadhE/pBR-1,2PDO, a novel bacterial strain that has blockage of ethanol biosynthesis and biosynthesized 1,2-PDO from lactic acid when glycerol is carbon source. Increasing the agitation speed from 200 to 400 rpm not only increased 1,2-PDO production by 2.24-fold to 731.0 ± 24.7 mg/L at 48 h but also increased the amount of a by-product, 2,3-butanediol. We attempted to inhibit 2,3-butanediol biosynthesis using the approaches of pH control and metabolic engineering. Control of pH at 7.0 successfully increased 1,2-PDO production (1016.5 ± 37.3 mg/L at 48 h), but the metabolic engineering approach was not successful. The plasmid in this strain maintained 100% stability for 72 h.
Conclusions: This study is the first to report the biosynthesis of 1,2-PDO from lactic acid in K. pneumoniae when glycerol was carbon source. The 1,2-PDO production was enhanced by blocking the synthesis of 2,3-butanediol through pH control. Our results indicate that K. pneumoniae GEM167 has potential for the production of additional valuable chemical products from metabolites produced through oxidative pathways.