KDM5A noncanonically binds antagonists MLL1/2 to mediate gene regulation and promotes epithelial to mesenchymal transition

IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
R. Kirtana, Soumen Manna, Samir Kumar Patra
{"title":"KDM5A noncanonically binds antagonists MLL1/2 to mediate gene regulation and promotes epithelial to mesenchymal transition","authors":"R. Kirtana,&nbsp;Soumen Manna,&nbsp;Samir Kumar Patra","doi":"10.1016/j.bbagrm.2023.194986","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Differential expression of genes involved in certain processes is a collaborative outcome of crosstalk between signalling molecules and epigenetic modifiers. In response to environmental stimulus, interplay between transcription factors and epigenetic modifiers together dictates the regulation of genes. MLLs and KDM5A are functionally antagonistic proteins, as one acts as a writer and the other erases the active chromatin mark, i.e., H3K4me3. KDM5A influences the process of EMT by binding to both epithelial and mesenchymal gene promoters. Through this work, we show that when bound to E-cadherin promoter, KDM5A acts as a classical </span>repressor<span> by demethylating H3K4me3, but on mesenchymal markers, it acts as a transcriptional activator by inhibiting the activity of HDACs and increasing H3K18ac. Further, through our chromatin immunoprecipitation experiments, we observed a co-occupancy of KDM5A with MLLs, we tested whether KDM5A might physically interact with MLLs and </span></span>WDR5, and here we provide experimental evidence that KDM5A indeed interacts with MLLs and WDR5.</p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 4","pages":"Article 194986"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874939923000810","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Differential expression of genes involved in certain processes is a collaborative outcome of crosstalk between signalling molecules and epigenetic modifiers. In response to environmental stimulus, interplay between transcription factors and epigenetic modifiers together dictates the regulation of genes. MLLs and KDM5A are functionally antagonistic proteins, as one acts as a writer and the other erases the active chromatin mark, i.e., H3K4me3. KDM5A influences the process of EMT by binding to both epithelial and mesenchymal gene promoters. Through this work, we show that when bound to E-cadherin promoter, KDM5A acts as a classical repressor by demethylating H3K4me3, but on mesenchymal markers, it acts as a transcriptional activator by inhibiting the activity of HDACs and increasing H3K18ac. Further, through our chromatin immunoprecipitation experiments, we observed a co-occupancy of KDM5A with MLLs, we tested whether KDM5A might physically interact with MLLs and WDR5, and here we provide experimental evidence that KDM5A indeed interacts with MLLs and WDR5.

KDM5A与拮抗剂MLL1/2非经典结合以介导基因调节并促进上皮向间充质的转变。
参与某些过程的基因的差异表达是信号分子和表观遗传学修饰物之间串扰的协同结果。在对环境刺激的反应中,转录因子和表观遗传学修饰因子之间的相互作用共同决定了基因的调节。MLL和KDM5A是功能拮抗蛋白,因为一个充当写入器,另一个擦除活性染色质标记,即H3K4me3。KDM5A通过与上皮和间充质基因启动子结合来影响EMT的过程。通过这项工作,我们发现,当与E-钙粘蛋白启动子结合时,KDM5A通过去甲基化H3K4me3作为经典的阻遏物,但在间充质标记物上,它通过抑制HDAC的活性和增加H3K18ac作为转录激活剂。此外,通过我们的染色质免疫沉淀实验,我们观察到KDM5A与MLL的共占,我们测试了KDM5A是否可能与MLL和WDR5发生物理相互作用,在这里我们提供了实验证据,证明KDM5A确实与MLLs和WDR5相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
2.10%
发文量
63
审稿时长
44 days
期刊介绍: BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信