A smartphone-based zero-effort method for mitigating epidemic propagation.

IF 1.7 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Qu Wang, Meixia Fu, Jianquan Wang, Lei Sun, Rong Huang, Xianda Li, Zhuqing Jiang
{"title":"A smartphone-based zero-effort method for mitigating epidemic propagation.","authors":"Qu Wang, Meixia Fu, Jianquan Wang, Lei Sun, Rong Huang, Xianda Li, Zhuqing Jiang","doi":"10.1186/s13634-023-00984-6","DOIUrl":null,"url":null,"abstract":"<p><p>A large number of epidemics, including COVID-19 and SARS, quickly swept the world and claimed the precious lives of large numbers of people. Due to the concealment and rapid spread of the virus, it is difficult to track down individuals with mild or asymptomatic symptoms with limited human resources. Building a low-cost and real-time epidemic early warning system to identify individuals who have been in contact with infected individuals and determine whether they need to be quarantined is an effective means to mitigate the spread of the epidemic. In this paper, we propose a smartphone-based zero-effort epidemic warning method for mitigating epidemic propagation. Firstly, we recognize epidemic-related voice activity relevant to epidemics spread by hierarchical attention mechanism and temporal convolutional network. Subsequently, we estimate the social distance between users through sensors built-in smartphone. Furthermore, we combine Wi-Fi network logs and social distance to comprehensively judge whether there is spatiotemporal contact between users and determine the duration of contact. Finally, we estimate infection risk based on epidemic-related vocal activity, social distance, and contact time. We conduct a large number of well-designed experiments in typical scenarios to fully verify the proposed method. The proposed method does not rely on any additional infrastructure and historical training data, which is conducive to integration with epidemic prevention and control systems and large-scale applications.</p>","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":"2023 1","pages":"18"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891762/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-023-00984-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A large number of epidemics, including COVID-19 and SARS, quickly swept the world and claimed the precious lives of large numbers of people. Due to the concealment and rapid spread of the virus, it is difficult to track down individuals with mild or asymptomatic symptoms with limited human resources. Building a low-cost and real-time epidemic early warning system to identify individuals who have been in contact with infected individuals and determine whether they need to be quarantined is an effective means to mitigate the spread of the epidemic. In this paper, we propose a smartphone-based zero-effort epidemic warning method for mitigating epidemic propagation. Firstly, we recognize epidemic-related voice activity relevant to epidemics spread by hierarchical attention mechanism and temporal convolutional network. Subsequently, we estimate the social distance between users through sensors built-in smartphone. Furthermore, we combine Wi-Fi network logs and social distance to comprehensively judge whether there is spatiotemporal contact between users and determine the duration of contact. Finally, we estimate infection risk based on epidemic-related vocal activity, social distance, and contact time. We conduct a large number of well-designed experiments in typical scenarios to fully verify the proposed method. The proposed method does not rely on any additional infrastructure and historical training data, which is conducive to integration with epidemic prevention and control systems and large-scale applications.

Abstract Image

Abstract Image

Abstract Image

一种基于智能手机的零努力方法,用于缓解流行病传播。
包括 COVID-19 和 SARS 在内的大量疫情迅速席卷全球,夺走了大批人的宝贵生命。由于病毒隐蔽性强、传播速度快,凭借有限的人力资源很难追踪到症状轻微或无症状的个体。建立一个低成本、实时的疫情预警系统,识别与感染者接触过的人,并确定是否需要隔离,是缓解疫情传播的有效手段。本文提出了一种基于智能手机的零工作量疫情预警方法,用于缓解疫情传播。首先,我们通过分层注意力机制和时序卷积网络识别与疫情传播相关的疫情相关语音活动。随后,我们通过智能手机内置的传感器估算用户之间的社交距离。此外,我们结合 Wi-Fi 网络日志和社交距离,综合判断用户之间是否存在时空接触,并确定接触的持续时间。最后,我们根据与流行病相关的发声活动、社交距离和接触时间来估计感染风险。我们在典型场景中进行了大量精心设计的实验,以充分验证所提出的方法。所提出的方法不依赖任何额外的基础设施和历史训练数据,有利于与疫情防控系统和大规模应用相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Eurasip Journal on Advances in Signal Processing
Eurasip Journal on Advances in Signal Processing ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
3.40
自引率
10.50%
发文量
109
审稿时长
3-8 weeks
期刊介绍: The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信