Peter A. Perrino, Renee Y. Chasse, Anthony P. Monaco, Zoltán Molnár, Antonio Velayos-Baeza, R. Holly Fitch
{"title":"Rapid auditory processing and medial geniculate nucleus anomalies in Kiaa0319 knockout mice","authors":"Peter A. Perrino, Renee Y. Chasse, Anthony P. Monaco, Zoltán Molnár, Antonio Velayos-Baeza, R. Holly Fitch","doi":"10.1111/gbb.12808","DOIUrl":null,"url":null,"abstract":"<p>Developmental dyslexia is a common neurodevelopmental disorder characterized by difficulties in reading and writing. Although underlying biological and genetic mechanisms remain unclear, anomalies in phonological processing and auditory processing have been associated with dyslexia. Several candidate risk genes have also been identified, with <i>KIAA0319</i> as a main candidate. Animal models targeting the rodent homolog (<i>Kiaa0319</i>) have been used to explore putative behavioral and anatomic anomalies, with mixed results. For example after downregulation of <i>Kiaa0319</i> expression in rats via shRNA, significant adult rapid auditory processing impairments were reported, along with cortical anomalies reflecting atypical neuronal migration. Conversely, <i>Kiaa0319</i> knockout (KO) mice were reported to have typical adult auditory processing, and no visible cortical anomalies. To address these inconsistencies, we tested <i>Kiaa0319</i> KO mice on auditory processing tasks similar to those used previously in rat shRNA knockdown studies. Subsequent neuroanatomic analyses on these same mice targeted medial geniculate nucleus (MGN), a receptive communication-related brain structure. Results confirm that <i>Kiaa0319</i> KO mice exhibit significant auditory processing impairments specific to rapid/brief stimuli, and also show significant volumetric reductions and a shift toward fewer large and smaller neurons in the MGN. The latter finding is consistent with post mortem MGN data from human dyslexic brains. Combined evidence supports a role for <i>KIAA0319</i> in the development of auditory CNS pathways subserving rapid auditory processing functions critical to the development of speech processing, language, and ultimately reading. Results affirm <i>KIAA0319</i> variation as a possible risk factor for dyslexia specifically via anomalies in central acoustic processing pathways.</p>","PeriodicalId":50426,"journal":{"name":"Genes Brain and Behavior","volume":"21 6","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/47/9a/GBB-21-e12808.PMC9744489.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbb.12808","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Developmental dyslexia is a common neurodevelopmental disorder characterized by difficulties in reading and writing. Although underlying biological and genetic mechanisms remain unclear, anomalies in phonological processing and auditory processing have been associated with dyslexia. Several candidate risk genes have also been identified, with KIAA0319 as a main candidate. Animal models targeting the rodent homolog (Kiaa0319) have been used to explore putative behavioral and anatomic anomalies, with mixed results. For example after downregulation of Kiaa0319 expression in rats via shRNA, significant adult rapid auditory processing impairments were reported, along with cortical anomalies reflecting atypical neuronal migration. Conversely, Kiaa0319 knockout (KO) mice were reported to have typical adult auditory processing, and no visible cortical anomalies. To address these inconsistencies, we tested Kiaa0319 KO mice on auditory processing tasks similar to those used previously in rat shRNA knockdown studies. Subsequent neuroanatomic analyses on these same mice targeted medial geniculate nucleus (MGN), a receptive communication-related brain structure. Results confirm that Kiaa0319 KO mice exhibit significant auditory processing impairments specific to rapid/brief stimuli, and also show significant volumetric reductions and a shift toward fewer large and smaller neurons in the MGN. The latter finding is consistent with post mortem MGN data from human dyslexic brains. Combined evidence supports a role for KIAA0319 in the development of auditory CNS pathways subserving rapid auditory processing functions critical to the development of speech processing, language, and ultimately reading. Results affirm KIAA0319 variation as a possible risk factor for dyslexia specifically via anomalies in central acoustic processing pathways.
期刊介绍:
Genes, Brain and Behavior was launched in 2002 with the aim of publishing top quality research in behavioral and neural genetics in their broadest sense. The emphasis is on the analysis of the behavioral and neural phenotypes under consideration, the unifying theme being the genetic approach as a tool to increase our understanding of these phenotypes.
Genes Brain and Behavior is pleased to offer the following features:
8 issues per year
online submissions with first editorial decisions within 3-4 weeks and fast publication at Wiley-Blackwells
High visibility through its coverage by PubMed/Medline, Current Contents and other major abstracting and indexing services
Inclusion in the Wiley-Blackwell consortial license, extending readership to thousands of international libraries and institutions
A large and varied editorial board comprising of international specialists.