A Bioluminescent Activity Dependent (BLADe) Platform for Converting Intracellular Activity to Photoreceptor Activation.

Emmanuel L Crespo, Akash Pal, Mansi Prakash, Alexander D Silvagnoli, Zohair Zaidi, Manuel Gomez-Ramirez, Maya O Tree, Nathan C Shaner, Diane Lipscombe, Christopher I Moore, Ute Hochgeschwender
{"title":"A Bioluminescent Activity Dependent (BLADe) Platform for Converting Intracellular Activity to Photoreceptor Activation.","authors":"Emmanuel L Crespo, Akash Pal, Mansi Prakash, Alexander D Silvagnoli, Zohair Zaidi, Manuel Gomez-Ramirez, Maya O Tree, Nathan C Shaner, Diane Lipscombe, Christopher I Moore, Ute Hochgeschwender","doi":"10.1101/2023.06.25.546469","DOIUrl":null,"url":null,"abstract":"<p><p>Genetically encoded sensors and actuators have advanced the ability to observe and manipulate cellular activity, yet few non-invasive strategies enable cells to directly couple their intracellular states to user-defined outputs. We developed a bioluminescent activity-dependent (BLADe) platform that facilitates programmable feedback through genetically encoded light generation. Using calcium (Ca2+) flux as a model, we engineered a Ca2+-dependent luciferase that functions as both a reporter and an activity-gated light source capable of photoactivating light-sensing actuators. In neurons, the presence of luciferin triggers Ca2+ dependent local illumination that provides activity dependent gene expression by activating a light-sensitive transcription factor and control of neural dynamics through opsin activation in single cells, populations and intact tissue. BLADe can be expanded to couple any signal that bioluminescent enzymes can be engineered to detect with the wide variety of photosensing actuators. This modular strategy of coupling an activity dependent light emitter to a light sensing actuator offers a generalizable framework for state dependent cell-autonomous control across biological systems.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/59/2a/nihpp-2023.06.25.546469v1.PMC10327117.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.06.25.546469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genetically encoded sensors and actuators have advanced the ability to observe and manipulate cellular activity, yet few non-invasive strategies enable cells to directly couple their intracellular states to user-defined outputs. We developed a bioluminescent activity-dependent (BLADe) platform that facilitates programmable feedback through genetically encoded light generation. Using calcium (Ca2+) flux as a model, we engineered a Ca2+-dependent luciferase that functions as both a reporter and an activity-gated light source capable of photoactivating light-sensing actuators. In neurons, the presence of luciferin triggers Ca2+ dependent local illumination that provides activity dependent gene expression by activating a light-sensitive transcription factor and control of neural dynamics through opsin activation in single cells, populations and intact tissue. BLADe can be expanded to couple any signal that bioluminescent enzymes can be engineered to detect with the wide variety of photosensing actuators. This modular strategy of coupling an activity dependent light emitter to a light sensing actuator offers a generalizable framework for state dependent cell-autonomous control across biological systems.

Abstract Image

Abstract Image

Abstract Image

将神经元活性转化为光受体激活的生物发光活性依赖(BLADe)平台。
我们开发了一个平台,利用钙依赖性萤光素酶将神经元活动转化为同一细胞内光感测结构域的激活。该平台基于Gaussia萤光素酶变体,其具有由钙调素-M13序列分裂的高光发射,该序列依赖于钙离子(Ca2+)的流入以进行功能重建。在荧光素、腔肠菌素(CTZ)存在的情况下,Ca2+内流导致光发射,从而驱动光感受器的激活,包括光遗传学通道和LOV结构域。转化萤光素酶的关键特征是在基线条件下发光低到足以不激活光感受器,而在Ca2+和荧光素存在下发光高到足以激活光敏元件。我们证明了这种活性依赖性传感器和积分器在体外和体内改变神经元个体和群体的膜电位和驱动转录方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信