{"title":"A novel approach for detection of COVID-19 and Pneumonia using only binary classification from chest CT-scans","authors":"Sanskar Hasija, Peddaputha Akash, Maganti Bhargav Hemanth, Ankit Kumar, Sanjeev Sharma","doi":"10.1016/j.neuri.2022.100069","DOIUrl":null,"url":null,"abstract":"<div><p>The novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spread all over the world, causing a dramatic shift in circumstances that resulted in a massive pandemic, affecting the world's well-being and stability. It is an RNA virus that can infect both humans as well as animals. Diagnosis of the virus as soon as possible could contain and avoid a serious COVID-19 outbreak. Current pharmaceutical techniques and diagnostic methods tests such as Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Serology tests are time-consuming, expensive, and require a well-equipped laboratory for analysis, making them restrictive and inaccessible to everyone. Deep Learning has grown in popularity in recent years, and it now plays a crucial role in Image Classification, which also involves Medical Imaging. Using chest CT scans, this study explores the problem statement automation of differentiating COVID-19 contaminated individuals from healthy individuals. Convolutional Neural Networks (CNNs) can be trained to detect patterns in computed tomography scans (CT scans). Hence, different CNN models were used in the current study to identify variations in chest CT scans, with accuracies ranging from 91% to 98%. The Multiclass Classification method is used to build these architectures. This study also proposes a new approach for classifying CT images that use two binary classifications combined to work together, achieving 98.38% accuracy. All of these architectures' performances are compared using different classification metrics.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"2 4","pages":"Article 100069"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958781/pdf/","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528622000310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
The novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spread all over the world, causing a dramatic shift in circumstances that resulted in a massive pandemic, affecting the world's well-being and stability. It is an RNA virus that can infect both humans as well as animals. Diagnosis of the virus as soon as possible could contain and avoid a serious COVID-19 outbreak. Current pharmaceutical techniques and diagnostic methods tests such as Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Serology tests are time-consuming, expensive, and require a well-equipped laboratory for analysis, making them restrictive and inaccessible to everyone. Deep Learning has grown in popularity in recent years, and it now plays a crucial role in Image Classification, which also involves Medical Imaging. Using chest CT scans, this study explores the problem statement automation of differentiating COVID-19 contaminated individuals from healthy individuals. Convolutional Neural Networks (CNNs) can be trained to detect patterns in computed tomography scans (CT scans). Hence, different CNN models were used in the current study to identify variations in chest CT scans, with accuracies ranging from 91% to 98%. The Multiclass Classification method is used to build these architectures. This study also proposes a new approach for classifying CT images that use two binary classifications combined to work together, achieving 98.38% accuracy. All of these architectures' performances are compared using different classification metrics.
Neuroscience informaticsSurgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology