Jonathan B Burkhardt, John Minor, William E Platten, Feng Shang, Regan Murray
{"title":"Relative Water Age in Premise Plumbing Systems Using an Agent-Based Modeling Framework.","authors":"Jonathan B Burkhardt, John Minor, William E Platten, Feng Shang, Regan Murray","doi":"10.1061/jwrmd5.wreng-5888","DOIUrl":null,"url":null,"abstract":"<p><p>Tools used to predict hydraulics and water quality within premise plumbing systems have gained recent interest. An open-source Python-based tool-PPMtools-for modeling and analyzing premise plumbing systems with WNTR or EPANET is presented. A relative water age-the time water has spent in a home-study using three real-world single-family homes was used to demonstrate PPMtools. Results showed that increased use-more people or higher flow fixtures-led to a general decrease in relative water ages. However, even with more use, one user could still experience water for a drinking activity with a relative water age equal to, or longer than, the duration of the longest stagnant period (sleeping or absence from home). Simulations also showed that the general relative water ages increased if the homes were plumbed with larger diameter piping [19.1 mm (3/4 in.) versus 12.7 mm (1/2 in.)]. Hot water heaters were found to have the largest impact on relative water age. Smaller volume uses generally had more variability in relative water ages, while larger volume uses (e.g., showering) resulted in generally low relative water ages with less variability because larger uses fully replaced water in the home with water from the main. This study highlights the potential for using PPMtools to explore more complex water quality modeling within premise plumbing systems.</p>","PeriodicalId":17655,"journal":{"name":"Journal of Water Resources Planning and Management","volume":"149 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Resources Planning and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1061/jwrmd5.wreng-5888","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Tools used to predict hydraulics and water quality within premise plumbing systems have gained recent interest. An open-source Python-based tool-PPMtools-for modeling and analyzing premise plumbing systems with WNTR or EPANET is presented. A relative water age-the time water has spent in a home-study using three real-world single-family homes was used to demonstrate PPMtools. Results showed that increased use-more people or higher flow fixtures-led to a general decrease in relative water ages. However, even with more use, one user could still experience water for a drinking activity with a relative water age equal to, or longer than, the duration of the longest stagnant period (sleeping or absence from home). Simulations also showed that the general relative water ages increased if the homes were plumbed with larger diameter piping [19.1 mm (3/4 in.) versus 12.7 mm (1/2 in.)]. Hot water heaters were found to have the largest impact on relative water age. Smaller volume uses generally had more variability in relative water ages, while larger volume uses (e.g., showering) resulted in generally low relative water ages with less variability because larger uses fully replaced water in the home with water from the main. This study highlights the potential for using PPMtools to explore more complex water quality modeling within premise plumbing systems.
期刊介绍:
The Journal of Water Resources Planning and Management reports on all phases of planning and management of water resources. The papers examine social, economic, environmental, and administrative concerns relating to the use and conservation of water. Social and environmental objectives in areas such as fish and wildlife management, water-based recreation, and wild and scenic river use are assessed. Developments in computer applications are discussed, as are ecological, cultural, and historical values.