Hyers-Ulam stability and existence of solutions for weighted Caputo-Fabrizio fractional differential equations

Q1 Mathematics
Xia Wu, Fulai Chen, Sufang Deng
{"title":"Hyers-Ulam stability and existence of solutions for weighted Caputo-Fabrizio fractional differential equations","authors":"Xia Wu,&nbsp;Fulai Chen,&nbsp;Sufang Deng","doi":"10.1016/j.csfx.2020.100040","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study Hyers-Ulam stability and generalized Hyers-Ulam stability of linear equations with weighted Caputo-Fabrizio fractional derivative. We establish existence and uniqueness of solutions for nonlinear equations using Schaefer’s fixed point theorem. In addition, we present a generalized Hyers-Ulam stability result via the Gronwall inequality. Finally, two examples are given to illustrate our main results.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"5 ","pages":"Article 100040"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100040","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259005442030021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we study Hyers-Ulam stability and generalized Hyers-Ulam stability of linear equations with weighted Caputo-Fabrizio fractional derivative. We establish existence and uniqueness of solutions for nonlinear equations using Schaefer’s fixed point theorem. In addition, we present a generalized Hyers-Ulam stability result via the Gronwall inequality. Finally, two examples are given to illustrate our main results.

加权Caputo-Fabrizio分数阶微分方程的Hyers-Ulam稳定性和解的存在性
本文研究了具有加权Caputo-Fabrizio分数阶导数的线性方程的Hyers-Ulam稳定性和广义Hyers-Ulam稳定性。利用Schaefer不动点定理,建立了非线性方程解的存在唯一性。此外,我们还利用Gronwall不等式给出了一个广义的Hyers-Ulam稳定性结果。最后,给出了两个例子来说明我们的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信