Human Belief State-Based Exploration and Exploitation in an Information-Selective Symmetric Reversal Bandit Task.

Lilla Horvath, Stanley Colcombe, Michael Milham, Shruti Ray, Philipp Schwartenbeck, Dirk Ostwald
{"title":"Human Belief State-Based Exploration and Exploitation in an Information-Selective Symmetric Reversal Bandit Task.","authors":"Lilla Horvath,&nbsp;Stanley Colcombe,&nbsp;Michael Milham,&nbsp;Shruti Ray,&nbsp;Philipp Schwartenbeck,&nbsp;Dirk Ostwald","doi":"10.1007/s42113-021-00112-3","DOIUrl":null,"url":null,"abstract":"<p><p>Humans often face sequential decision-making problems, in which information about the environmental reward structure is detached from rewards for a subset of actions. In the current exploratory study, we introduce an information-selective symmetric reversal bandit task to model such situations and obtained choice data on this task from 24 participants. To arbitrate between different decision-making strategies that participants may use on this task, we developed a set of probabilistic agent-based behavioral models, including exploitative and explorative Bayesian agents, as well as heuristic control agents. Upon validating the model and parameter recovery properties of our model set and summarizing the participants' choice data in a descriptive way, we used a maximum likelihood approach to evaluate the participants' choice data from the perspective of our model set. In brief, we provide quantitative evidence that participants employ a belief state-based hybrid explorative-exploitative strategy on the information-selective symmetric reversal bandit task, lending further support to the finding that humans are guided by their subjective uncertainty when solving exploration-exploitation dilemmas.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42113-021-00112-3.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"4 4","pages":"442-462"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42113-021-00112-3","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational brain & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42113-021-00112-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Humans often face sequential decision-making problems, in which information about the environmental reward structure is detached from rewards for a subset of actions. In the current exploratory study, we introduce an information-selective symmetric reversal bandit task to model such situations and obtained choice data on this task from 24 participants. To arbitrate between different decision-making strategies that participants may use on this task, we developed a set of probabilistic agent-based behavioral models, including exploitative and explorative Bayesian agents, as well as heuristic control agents. Upon validating the model and parameter recovery properties of our model set and summarizing the participants' choice data in a descriptive way, we used a maximum likelihood approach to evaluate the participants' choice data from the perspective of our model set. In brief, we provide quantitative evidence that participants employ a belief state-based hybrid explorative-exploitative strategy on the information-selective symmetric reversal bandit task, lending further support to the finding that humans are guided by their subjective uncertainty when solving exploration-exploitation dilemmas.

Supplementary information: The online version contains supplementary material available at 10.1007/s42113-021-00112-3.

Abstract Image

Abstract Image

Abstract Image

基于人类信念状态的信息选择对称逆贼任务探索与开发。
人类经常面临顺序决策问题,其中关于环境奖励结构的信息与行动子集的奖励是分离的。在目前的探索性研究中,我们引入了一个信息选择对称反转强盗任务来模拟这种情况,并从24名参与者中获得了该任务的选择数据。为了在参与者可能使用的不同决策策略之间进行仲裁,我们开发了一套基于概率代理的行为模型,包括利用性和探索性贝叶斯代理,以及启发式控制代理。在验证了模型集的模型和参数恢复特性,并以描述性的方式总结了参与者的选择数据后,我们使用最大似然法从模型集的角度对参与者的选择数据进行了评估。简而言之,我们提供了定量证据,证明参与者在信息选择对称反转强盗任务中采用基于信念状态的混合探索-利用策略,进一步支持了人类在解决探索-利用困境时受主观不确定性指导的发现。补充信息:在线版本包含补充资料,下载地址:10.1007/s42113-021-00112-3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信