{"title":"ASSESSING TIME-VARYING CAUSAL EFFECT MODERATION IN THE PRESENCE OF CLUSTER-LEVEL TREATMENT EFFECT HETEROGENEITY AND INTERFERENCE.","authors":"Jieru Shi, Zhenke Wu, Walter Dempsey","doi":"10.1093/biomet/asac065","DOIUrl":null,"url":null,"abstract":"<p><p>The micro-randomized trial (MRT) is a sequential randomized experimental design to empirically evaluate the effectiveness of mobile health (mHealth) intervention components that may be delivered at hundreds or thousands of decision points. MRTs have motivated a new class of causal estimands, termed \"causal excursion effects\", for which semiparametric inference can be conducted via a weighted, centered least squares criterion (Boruvka et al., 2018). Existing methods assume between-subject independence and non-interference. Deviations from these assumptions often occur. In this paper, causal excursion effects are revisited under potential cluster-level treatment effect heterogeneity and interference, where the treatment effect of interest may depend on cluster-level moderators. Utility of the proposed methods is shown by analyzing data from a multi-institution cohort of first year medical residents in the United States.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501736/pdf/nihms-1882489.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asac065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
The micro-randomized trial (MRT) is a sequential randomized experimental design to empirically evaluate the effectiveness of mobile health (mHealth) intervention components that may be delivered at hundreds or thousands of decision points. MRTs have motivated a new class of causal estimands, termed "causal excursion effects", for which semiparametric inference can be conducted via a weighted, centered least squares criterion (Boruvka et al., 2018). Existing methods assume between-subject independence and non-interference. Deviations from these assumptions often occur. In this paper, causal excursion effects are revisited under potential cluster-level treatment effect heterogeneity and interference, where the treatment effect of interest may depend on cluster-level moderators. Utility of the proposed methods is shown by analyzing data from a multi-institution cohort of first year medical residents in the United States.