Qianyun Chen, Jill Abrigo, Min Deng, Lin Shi, Yi-Xiang Wang, Winnie C W Chu
{"title":"Structural Network Topology Reveals Higher Brain Resilience in Individuals with Preclinical Alzheimer's Disease.","authors":"Qianyun Chen, Jill Abrigo, Min Deng, Lin Shi, Yi-Xiang Wang, Winnie C W Chu","doi":"10.1089/brain.2023.0013","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> The diagnosis of Alzheimer's disease (AD) requires the presence of amyloid and tau pathology, but it remains unclear how they affect the structural network in the pre-clinical stage. We aimed to assess differences in topological properties in cognitively normal (CN) individuals with varying levels of amyloid and tau pathology, as well as their association with AD pathology burden. <b><i>Methods:</i></b> A total of 68 CN individuals were included and stratified by normal/abnormal (-/+) amyloid (A) and tau (T) status based on positron emission tomography results, yielding three groups: A-T- (<i>n</i> = 19), A+T- (<i>n</i> = 28), and A+T+ (<i>n</i> = 21). Topological properties were measured from structural connectivity. Group differences and correlations with A and T were evaluated. <b><i>Results:</i></b> Compared with the A-T- group, the A+T+ group exhibited changes in the structural network topology. At the global level, higher assortativity was shown in the A+T+ group and was correlated with greater tau burden (<i>r</i> = 0.29, <i>p</i> = 0.02), while no difference in global efficiency was found across the three groups. At the local level, the A+T+ group showed disrupted topological properties in the left hippocampus compared with the A-T- group, characterized by lower local efficiency (<i>p</i> < 0.01) and a lower clustering coefficient (<i>p</i> = 0.014). <b><i>Conclusions:</i></b> The increased linkage in the higher level architecture of the white matter network reflected by assortativity may indicate increased brain resilience in the early pathological state. Our results encourage further investigation of the topological properties of the structural network in pre-clinical AD.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"553-562"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10771874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2023.0013","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The diagnosis of Alzheimer's disease (AD) requires the presence of amyloid and tau pathology, but it remains unclear how they affect the structural network in the pre-clinical stage. We aimed to assess differences in topological properties in cognitively normal (CN) individuals with varying levels of amyloid and tau pathology, as well as their association with AD pathology burden. Methods: A total of 68 CN individuals were included and stratified by normal/abnormal (-/+) amyloid (A) and tau (T) status based on positron emission tomography results, yielding three groups: A-T- (n = 19), A+T- (n = 28), and A+T+ (n = 21). Topological properties were measured from structural connectivity. Group differences and correlations with A and T were evaluated. Results: Compared with the A-T- group, the A+T+ group exhibited changes in the structural network topology. At the global level, higher assortativity was shown in the A+T+ group and was correlated with greater tau burden (r = 0.29, p = 0.02), while no difference in global efficiency was found across the three groups. At the local level, the A+T+ group showed disrupted topological properties in the left hippocampus compared with the A-T- group, characterized by lower local efficiency (p < 0.01) and a lower clustering coefficient (p = 0.014). Conclusions: The increased linkage in the higher level architecture of the white matter network reflected by assortativity may indicate increased brain resilience in the early pathological state. Our results encourage further investigation of the topological properties of the structural network in pre-clinical AD.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.