Coherent pathway enrichment estimation by modeling inter-pathway dependencies using regularized regression.

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Kim Philipp Jablonski, Niko Beerenwinkel
{"title":"Coherent pathway enrichment estimation by modeling inter-pathway dependencies using regularized regression.","authors":"Kim Philipp Jablonski,&nbsp;Niko Beerenwinkel","doi":"10.1093/bioinformatics/btad522","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Gene set enrichment methods are a common tool to improve the interpretability of gene lists as obtained, for example, from differential gene expression analyses. They are based on computing whether dysregulated genes are located in certain biological pathways more often than expected by chance. Gene set enrichment tools rely on pre-existing pathway databases such as KEGG, Reactome, or the Gene Ontology. These databases are increasing in size and in the number of redundancies between pathways, which complicates the statistical enrichment computation.</p><p><strong>Results: </strong>We address this problem and develop a novel gene set enrichment method, called pareg, which is based on a regularized generalized linear model and directly incorporates dependencies between gene sets related to certain biological functions, for example, due to shared genes, in the enrichment computation. We show that pareg is more robust to noise than competing methods. Additionally, we demonstrate the ability of our method to recover known pathways as well as to suggest novel treatment targets in an exploratory analysis using breast cancer samples from TCGA.</p><p><strong>Availability and implementation: </strong>pareg is freely available as an R package on Bioconductor (https://bioconductor.org/packages/release/bioc/html/pareg.html) as well as on https://github.com/cbg-ethz/pareg. The GitHub repository also contains the Snakemake workflows needed to reproduce all results presented here.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"39 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471899/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad522","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Gene set enrichment methods are a common tool to improve the interpretability of gene lists as obtained, for example, from differential gene expression analyses. They are based on computing whether dysregulated genes are located in certain biological pathways more often than expected by chance. Gene set enrichment tools rely on pre-existing pathway databases such as KEGG, Reactome, or the Gene Ontology. These databases are increasing in size and in the number of redundancies between pathways, which complicates the statistical enrichment computation.

Results: We address this problem and develop a novel gene set enrichment method, called pareg, which is based on a regularized generalized linear model and directly incorporates dependencies between gene sets related to certain biological functions, for example, due to shared genes, in the enrichment computation. We show that pareg is more robust to noise than competing methods. Additionally, we demonstrate the ability of our method to recover known pathways as well as to suggest novel treatment targets in an exploratory analysis using breast cancer samples from TCGA.

Availability and implementation: pareg is freely available as an R package on Bioconductor (https://bioconductor.org/packages/release/bioc/html/pareg.html) as well as on https://github.com/cbg-ethz/pareg. The GitHub repository also contains the Snakemake workflows needed to reproduce all results presented here.

Abstract Image

Abstract Image

利用正则化回归建模路径间依赖关系的相干路径富集估计。
动机:基因集富集方法是提高基因列表可解释性的常用工具,例如,从差异基因表达分析中获得。它们的基础是计算失调基因在某些生物途径中的位置是否比预期的偶然更频繁。基因集富集工具依赖于预先存在的通路数据库,如KEGG、Reactome或Gene Ontology。这些数据库的规模和路径之间的冗余数量都在增加,这使得统计富集计算变得复杂。结果:我们解决了这一问题,并开发了一种新的基因集富集方法,称为pareg,该方法基于正则化广义线性模型,并在富集计算中直接纳入与某些生物功能相关的基因集之间的依赖关系,例如,由于共享基因。我们证明pareg比竞争方法对噪声的鲁棒性更强。此外,我们证明了我们的方法能够恢复已知途径,并在使用TCGA乳腺癌样本的探索性分析中提出新的治疗靶点。可用性和实现:pareg作为R包可以在Bioconductor (https://bioconductor.org/packages/release/bioc/html/pareg.html)和https://github.com/cbg-ethz/pareg上免费获得。GitHub存储库还包含了蛇makake工作流,它需要重现这里展示的所有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信